229
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The disease maturity-onset diabetes of the young (MODY) is a genetically heterogeneous monogenic form of non-insulin-dependent (type 2) diabetes mellitus (NIDDM), characterized by early onset, usually before 25 years of age and often in adolescence or childhood, and by autosomal dominant inheritance. It has been estimated that 2-5% of patients with NIDDM may have this form of diabetes mellitus. Clinical studies have shown that prediabetic MODY subjects have normal insulin sensitivity but suffer from a defect in glucose-stimulated insulin secretion, suggesting that pancreatic beta-cell dysfunction rather than insulin resistance is the primary defect in this disorder. Linkage studies have localized the genes that are mutated in MODY on human chromosomes 20 (MODY1), 7 (MODY2) and 12 (MODY3), with MODY2 and MODY3 being allelic with the genes encoding glucokinase, a key regulator of insulin secretion, and hepatocyte nuclear factor-1alpha (HNF-1alpha), a transcription factor involved in tissue-specific regulation of liver genes but also expressed in pancreatic islets, insulinoma cells and other tissues. Here we show that MODY1 is the gene encoding HNF-4alpha (gene symbol, TCF14), a member of the steroid/thyroid hormone receptor superfamily and an upstream regulator of HNF-1alpha expression.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3)

          The disease non-insulin-dependent (type 2) diabetes mellitus (NIDDM) is characterized by abnormally high blood glucose resulting from a relative deficiency of insulin. It affects about 2% of the world's population and treatment of diabetes and its complications are an increasing health-care burden. Genetic factors are important in the aetiology of NIDDM, and linkage studies are starting to localize some of the genes that influence the development of this disorder. Maturity-onset diabetes of the young (MODY), a single-gene disorder responsible for 2-5% of NIDDM, is characterized by autosomal dominant inheritance and an age of onset of 25 years or younger. MODY genes have been localized to chromosomes 7, 12 and 20 (refs 5, 7, 8) and clinical studies indicate that mutations in these genes are associated with abnormal patterns of glucose-stimulated insulin secretion. The gene on chromosome 7 (MODY2) encodes the glycolytic enzyme glucokinases which plays a key role in generating the metabolic signal for insulin secretion and in integrating hepatic glucose uptake. Here we show that subjects with the MODY3-form of NIDDM have mutations in the gene encoding hepatocyte nuclear factor-1alpha (HNF-1alpha, which is encoded by the gene TCF1). HNF-1alpha is a transcription factor that helps in the tissue-specific regulation of the expression of several liver genes and also functions as a weak transactivator of the rat insulin-I gene.
            Bookmark

            Author and article information

            Journal
            Nature
            Nature
            Springer Science and Business Media LLC
            0028-0836
            1476-4687
            December 1996
            December 1996
            : 384
            : 6608
            : 458-460
            Article
            10.1038/384458a0
            8945471
            b1ca2e11-b23f-4c01-bc1f-58b47a2a392c
            © 1996

            http://www.springer.com/tdm

            History

            Comments

            Comment on this article