40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Vascular Cognitive Impairment

      1 , 1
      Circulation Research
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Structural and functional brain networks: from connections to cognition.

          How rich functionality emerges from the invariant structural architecture of the brain remains a major mystery in neuroscience. Recent applications of network theory and theoretical neuroscience to large-scale brain networks have started to dissolve this mystery. Network analyses suggest that hierarchical modular brain networks are particularly suited to facilitate local (segregated) neuronal operations and the global integration of segregated functions. Although functional networks are constrained by structural connections, context-sensitive integration during cognition tasks necessarily entails a divergence between structural and functional networks. This degenerate (many-to-one) function-structure mapping is crucial for understanding the nature of brain networks. The emergence of dynamic functional networks from static structural connections calls for a formal (computational) approach to neuronal information processing that may resolve this dialectic between structure and function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies.

            The relationship between body mass index (BMI) (in midlife and late-life) and dementia was investigated in meta-analyses of 16 articles reporting on 15 prospective studies. Follow-ups ranged from 3.2 to 36.0 years. Meta-analyses were conducted on samples including 25 624 participants evaluated for Alzheimer's disease (AD), 15 435 participants evaluated for vascular dementia (VaD) and 30 470 followed for any type of dementia (Any Dementia). Low BMI in midlife was associated with 1.96 [95% confidence interval (CI): 1.32, 2.92] times the risk of developing AD. The pooled relative risks for AD, VaD and Any Dementia for overweight BMI in midlife compared with normal BMI were 1.35 (95% CI:1.19, 1.54), 1.33 (95% CI: 1.02, 1.75) and 1.26 (95% CI: 1.10, 1.44), respectively. The pooled relative risks of AD and Any Dementia for obese BMI in midlife compared to normal BMI were 2.04 (95% CI: 1.59, 2.62) and 1.64 (95% CI: 1.34, 2.00), respectively. Continuous BMI in late-life was not associated with dementia. Small numbers of studies included in pooled analyses reduce generalizability of findings, and emphasize the need for publication of additional findings. We conclude that underweight, overweight and obesity in midlife increase dementia risk. Further research evaluating late-life BMI and dementia is required. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study.

              Cerebral microbleeds are focal deposits of hemosiderin that can be visualized with MRI. Little is known on their prevalence in the general population and on their etiology. It has been suggested that, in analogy to spontaneous intracranial hemorrhage, the etiology of microbleeds differs according to their location in the brain, with lobar microbleeds being caused by cerebral amyloid angiopathy and deep or infratentorial microbleeds resulting from hypertension and atherosclerosis. We investigated the prevalence of and risk factors for microbleeds in the general population aged 60 years and older. This study is based on 1,062 persons (mean age 69.6 years) from the population-based Rotterdam Scan Study. MRI was performed at 1.5 T and included a sequence optimized to increase the conspicuity of microbleeds. We assessed the relation of APOE genotype, cardiovascular risk factors, and markers of small vessel disease to the presence and location of microbleeds with multiple logistic regression. Overall prevalence of cerebral microbleeds was high and increased with age from 17.8% in persons aged 60-69 years to 38.3% in those over 80 years. APOE epsilon 4 carriers had significantly more often strictly lobar microbleeds than noncarriers. In contrast, cardiovascular risk factors and presence of lacunar infarcts and white matter lesions were associated with microbleeds in a deep or infratentorial location but not in a lobar location. The prevalence of cerebral microbleeds is high. Our data support the hypothesis that strictly lobar microbleeds are related to cerebral amyloid angiopathy, whereas microbleeds in a deep or infratentorial location result from hypertensive or atherosclerotic microangiopathy.
                Bookmark

                Author and article information

                Journal
                Circulation Research
                Circ Res
                Ovid Technologies (Wolters Kluwer Health)
                0009-7330
                1524-4571
                February 03 2017
                February 03 2017
                : 120
                : 3
                : 573-591
                Affiliations
                [1 ]From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany (M.D.); German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (M.D.); Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.); and University of Lille, INSERM, CHU Lille, U1171-Degenerative & Vascular Cognitive Disorders, F-59000 Lille, France (D.L.).
                Article
                10.1161/CIRCRESAHA.116.308426
                28154105
                b1d1e349-e199-467c-974c-820aca6760b7
                © 2017
                History

                Comments

                Comment on this article