7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na + and H + , but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          The equilibrative nucleoside transporter family, SLC29.

          The human SLC29 family of proteins contains four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterised family member, hENT1. They belong to the widely-distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporters and are distantly related to a lysosomal membrane protein, CLN3, mutations in which cause neuronal ceroid lipofuscinosis. A predicted topology of 11 transmembrane helices with a cytoplasmic N-terminus and an extracellular C-terminus has been experimentally confirmed for hENT1. The best-characterised members of the family, hENT1 and hENT2, possess similar broad substrate specificities for purine and pyrimidine nucleosides, but hENT2 in addition efficiently transports nucleobases. The ENT3 and ENT4 isoforms have more recently also been shown to be genuine nucleoside transporters. All four isoforms are widely distributed in mammalian tissues, although their relative abundance varies: ENT2 is particularly abundant in skeletal muscle. In polarised cells ENT1 and ENT2 are found in the basolateral membrane and, in tandem with concentrative transporters of the SLC28 family, may play a role in transepithelial nucleoside transport. The transporters play key roles in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis, and are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. In addition, by regulating the concentration of adenosine available to cell surface receptors, they influence many physiological processes ranging from cardiovascular activity to neurotransmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interstitial lung diseases induced or exacerbated by DMARDS and biologic agents in rheumatoid arthritis: a systematic literature review.

            To review published cases of induced or exacerbated interstitial lung disease (ILD) in rheumatoid arthritis (RA) associated with non-biologic disease-modifying antirheumatic drugs (nbDMARDs) and biologics and to discuss clinical implications in daily practice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of LAT4, a novel amino acid transporter with system L activity.

              System L amino acid transporters mediate the movement of bulky neutral amino acids across cell membranes. Until now three proteins that induce system L activity have been identified: LAT1, LAT2, and LAT3. The former two proteins belong to the solute carrier family 7 (SLC7), whereas the latter belongs to SLC43. In the present study we present a new cDNA, designated LAT4, which also mediates system L activity when expressed in Xenopus laevis oocytes. Human LAT4 exhibits 57% identity to human LAT3. Like LAT3, the amino acid transport activity induced by LAT4 is sodium-, chloride- and pH-independent, is not trans-stimulated, and shows two kinetic components. The low affinity component of LAT4 induced activity is sensitive to the sulfhydryl-specific reagent N-ethylmaleimide but not that with high affinity. Mutation in LAT4 of the SLC43 conserved serine 297 to alanine abolishes sensitivity to N-ethylmaleimide. LAT4 activity is detected at the basolateral membrane of PCT kidney cells. In situ hybridization experiments show that LAT4 mRNA is restricted to the epithelial cells of the distal tubule and the collecting duct in the kidney. In the intestine, LAT4 is mainly present in the cells of the crypt.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                12 October 2015
                2015
                : 5
                Affiliations
                [1 ]Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya, Japan
                [2 ]Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Tokyo, Japan
                [3 ]Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University , Osaka, Japan
                [4 ]Department of Pharmacy, The University of Tokyo Hospital , Tokyo, Japan
                [5 ]Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College , Saitama, Japan
                Author notes
                Article
                srep15057
                10.1038/srep15057
                4796657
                26455426
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article