20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blocking matrix metalloproteinase-mediated syndecan-4 shedding restores the endothelial glycocalyx and glomerular filtration barrier function in early diabetic kidney disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endothelial glycocalyx is a key component of the glomerular filtration barrier. We have shown that matrix metalloproteinase (MMP)-mediated syndecan 4 shedding is a mechanism of glomerular endothelial glycocalyx damage in vitro, resulting in increased albumin permeability. Here we sought to determine whether this mechanism is important in early diabetic kidney disease, by studying streptozotocin-induced type 1 diabetes in DBA2/J mice. Diabetic mice were albuminuric, had increased glomerular albumin permeability and endothelial glycocalyx damage. Syndecan 4 mRNA expression was found to be upregulated in isolated glomeruli and in flow cytometry-sorted glomerular endothelial cells. In contrast, glomerular endothelial luminal surface syndecan 4 and Marasmium oreades agglutinin lectin labelling measurements were reduced in the diabetic mice. Similarly, syndecan 4 protein expression was significantly decreased in isolated glomeruli but increased in plasma and urine, suggesting syndecan 4 shedding. M mp -2, 9 and 14 mRNA expression were upregulated in isolated glomeruli, suggesting a possible mechanism of glycocalyx damage and albuminuria. We therefore characterised in detail the activity of MMP-2 and 9 and found significant increases in kidney cortex, plasma and urine. Treatment with MMP-2/9 inhibitor I for 21 days, started six weeks after diabetes induction, restored endothelial glycocalyx depth and coverage and attenuated diabetes-induced albuminuria and reduced glomerular albumin permeability. MMP inhibitor treatment significantly attenuated glomerular endothelial and plasma syndecan 4 shedding and inhibited plasma MMP activity. Thus, our studies confirm the importance of MMPs in endothelial glycocalyx damage and albuminuria in early diabetes and demonstrate that this pathway is amenable to therapeutic intervention. Hence, treatments targeted at glycocalyx protection by MMP inhibition may be of benefit in diabetic kidney disease.

          Graphical abstract

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          The endothelial glycocalyx: composition, functions, and visualization

          This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The structure and function of the endothelial glycocalyx layer.

            Over the past decade, since it was first observed in vivo, there has been an explosion in interest in the thin (approximately 500 nm), gel-like endothelial glycocalyx layer (EGL) that coats the luminal surface of blood vessels. In this review, we examine the mechanical and biochemical properties of the EGL and the latest studies on the interactions of this layer with red and white blood cells. This includes its deformation owing to fluid shear stress, its penetration by leukocyte microvilli, and its restorative response after the passage of a white cell in a tightly fitting capillary. We also examine recently discovered functions of the EGL in modulating the oncotic forces that regulate the exchange of water in microvessels and the role of the EGL in transducing fluid shear stress into the intracellular cytoskeleton of endothelial cells, in the initiation of intracellular signaling, and in the inflammatory response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Is there new hope for therapeutic matrix metalloproteinase inhibition?

              Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that form a family of 24 members in mammals. Evidence of the pathological roles of MMPs in various diseases, combined with their druggability, has made them attractive therapeutic targets. Initial drug discovery efforts focused on the roles of MMPs in cancer progression, and more than 50 MMP inhibitors have been investigated in clinical trials in various cancers. However, all of these trials failed. Reasons for failure include the lack of inhibitor specificity and insufficient knowledge about the complexity of the disease biology. MMPs are also known to be involved in several inflammatory processes, and there are new therapeutic opportunities for MMP inhibitors to treat such diseases. In this Review, we discuss the recent advances made in understanding the role of MMPs in inflammatory diseases and the therapeutic potential of MMP inhibition in those conditions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Kidney Int
                Kidney Int
                Kidney International
                Elsevier
                0085-2538
                1523-1755
                1 May 2020
                May 2020
                : 97
                : 5
                : 951-965
                Affiliations
                [1 ]Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
                Author notes
                [] Correspondence: Raina D. Ramnath, Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom. mdrdr@ 123456bristol.ac.uk
                Article
                S0085-2538(19)31110-X
                10.1016/j.kint.2019.09.035
                7184681
                32037077
                b1d63d51-a469-407b-9d36-d2167efd638b
                © 2019 International Society of Nephrology. Published by Elsevier Inc.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 5 November 2018
                : 6 September 2019
                : 27 September 2019
                Categories
                Article

                Nephrology
                diabetes,glomerular endothelial glycocalyx,matrix metalloproteinase,syndecan-4
                Nephrology
                diabetes, glomerular endothelial glycocalyx, matrix metalloproteinase, syndecan-4

                Comments

                Comment on this article