7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Light-Activated Antimicrobial Surface Is Active Against Bacterial, Viral and Fungal Organisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evidence has shown that environmental surfaces play an important role in the transmission of nosocomial pathogens. Deploying antimicrobial surfaces in hospital wards could reduce the role environmental surfaces play as reservoirs for pathogens. Herein we show a significant reduction in viable counts of Staphylococcus epidermidis, Saccharomyces cerevisiae, and MS2 Bacteriophage after light treatment of a medical grade silicone incorporating crystal violet, methylene blue and 2 nm gold nanoparticles. Furthermore, a migration assay demonstrated that in the presence of light, growth of the fungus-like organism Pythium ultimum and the filamentous fungus Botrytis cinerea was inhibited. Atomic Force Microscopy showed significant alterations to the surface of S. epidermidis, and electron microscopy showed cellular aggregates connected by discrete surface linkages. We have therefore demonstrated that the embedded surface has a broad antimicrobial activity under white light and that the surface treatment causes bacterial envelope damage and cell aggregation.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The structure and synthesis of the fungal cell wall.

          The fungal cell wall is a dynamic structure that protects the cell from changes in osmotic pressure and other environmental stresses, while allowing the fungal cell to interact with its environment. The structure and biosynthesis of a fungal cell wall is unique to the fungi, and is therefore an excellent target for the development of anti-fungal drugs. The structure of the fungal cell wall and the drugs that target its biosynthesis are reviewed. Based on studies in a number of fungi, the cell wall has been shown to be primarily composed of chitin, glucans, mannans and glycoproteins. The biosynthesis of the various components of the fungal cell wall and the importance of the components in the formation of a functional cell wall, as revealed through mutational analyses, are discussed. There is strong evidence that the chitin, glucans and glycoproteins are covalently cross-linked together and that the cross-linking is a dynamic process that occurs extracellularly. (c) 2006 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species.

            Health care-associated infections (HAI) remain a major cause of patient morbidity and mortality. Although the main source of nosocomial pathogens is likely the patient's endogenous flora, an estimated 20% to 40% of HAI have been attributed to cross infection via the hands of health care personnel, who have become contaminated from direct contact with the patient or indirectly by touching contaminated environmental surfaces. Multiple studies strongly suggest that environmental contamination plays an important role in the transmission of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus spp. More recently, evidence suggests that environmental contamination also plays a role in the nosocomial transmission of norovirus, Clostridium difficile, and Acinetobacter spp. All 3 pathogens survive for prolonged periods of time in the environment, and infections have been associated with frequent surface contamination in hospital rooms and health care worker hands. In some cases, the extent of patient-to-patient transmission has been found to be directly proportional to the level of environmental contamination. Improved cleaning/disinfection of environmental surfaces and hand hygiene have been shown to reduce the spread of all of these pathogens. Importantly, norovirus and C difficile are relatively resistant to the most common surface disinfectants and waterless alcohol-based antiseptics. Current hand hygiene guidelines and recommendations for surface cleaning/disinfection should be followed in managing outbreaks because of these emerging pathogens. (c) 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role played by contaminated surfaces in the transmission of nosocomial pathogens.

              Studies in the 1970s and 1980s suggested that environmental surface contamination played a negligible role in the endemic transmission of healthcare-associated infections. However, recent studies have demonstrated that several major nosocomial pathogens are shed by patients and contaminate hospital surfaces at concentrations sufficient for transmission, survive for extended periods, persist despite attempts to disinfect or remove them, and can be transferred to the hands of healthcare workers. Evidence is accumulating that contaminated surfaces make an important contribution to the epidemic and endemic transmission of Clostridium difficile, vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and norovirus and that improved environmental decontamination contributes to the control of outbreaks. Efforts to improve environmental hygiene should include enhancing the efficacy of cleaning and disinfection and reducing the shedding of pathogens. Further high-quality studies are needed to clarify the role played by surfaces in nosocomial transmission and to determine the effectiveness of different interventions in reducing associated infection rates.
                Bookmark

                Author and article information

                Contributors
                l.ciric@ucl.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 November 2017
                10 November 2017
                2017
                : 7
                : 15298
                Affiliations
                [1 ]ISNI 0000000121901201, GRID grid.83440.3b, Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, University College London, ; London, UK
                [2 ]ISNI 0000000121901201, GRID grid.83440.3b, Materials Chemistry Centre, Department of Chemistry, University College London, ; London, UK
                [3 ]ISNI 0000 0001 2324 0507, GRID grid.88379.3d, Department of Biological Sciences, Birkbeck College, ; London, UK
                Article
                15565
                10.1038/s41598-017-15565-5
                5681661
                29127333
                b1dd223b-4ea0-4a0d-bc49-b3fc2789d59a
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 May 2016
                : 26 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article