2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emotional Influences on Cognitive Flexibility Depend on Individual Differences: A Combined Micro-Phenomenological and Psychophysiological Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Imagine a scenario where you are cooking and suddenly, the contents of the pot start to come out, and the oven bell rings. You would have to stop what you are doing and start responding to the changing demands, switching between different objects, operations and mental sets. This ability is known as cognitive flexibility. Now, add to this scenario a strong emotional atmosphere that invades you as you spontaneously recall a difficult situation you had that morning. How would you behave? Recent studies suggest that emotional states do modulate cognitive flexibility, but these findings are still controversial. Moreover, there is a lack of evidence regarding the underlying brain processes. The purpose of the present study was, therefore, to examine such interaction while monitoring changes in ongoing cortical activity using EEG. In order to answer this question, we used two musical stimuli to induce emotional states (positive/high arousal/open stance and negative/high arousal/closed stance). Twenty-nine participants performed two blocks of the Madrid Card Sorting Task in a neutral silence condition and then four blocks while listening to the counterbalanced musical stimuli. To explore this interaction, we used a combination of first-person (micro-phenomenological interview) and third-person (behavior and EEG) approaches. Our results show that compared to the positive stimuli and silence condition, negative stimuli decrease reaction times (RTs) for the shift signal. Our data show that the valance of the first emotional block is determinant in the RTs of the subsequent blocks. Additionally, the analysis of the micro-phenomenological interview and the integration of first- and third-person data show that the emotional disposition generated by the music could facilitate task performance for some participants or hamper it for others, independently of its emotional valence. When the emotional disposition hampered task execution, RTs were slower, and the P300 potential showed a reduced amplitude compared to the facilitated condition. These findings show that the interaction between emotion and cognitive flexibility is more complex than previously thought and points to a new way of understanding the underlying mechanisms by incorporating an in-depth analysis of individual subjective experience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found

          Executive Functions

          Executive functions (EFs) make possible mentally playing with ideas; taking the time to think before acting; meeting novel, unanticipated challenges; resisting temptations; and staying focused. Core EFs are inhibition [response inhibition (self-control—resisting temptations and resisting acting impulsively) and interference control (selective attention and cognitive inhibition)], working memory, and cognitive flexibility (including creatively thinking “outside the box,” seeing anything from different perspectives, and quickly and flexibly adapting to changed circumstances). The developmental progression and representative measures of each are discussed. Controversies are addressed (e.g., the relation between EFs and fluid intelligence, self-regulation, executive attention, and effortful control, and the relation between working memory and inhibition and attention). The importance of social, emotional, and physical health for cognitive health is discussed because stress, lack of sleep, loneliness, or lack of exercise each impair EFs. That EFs are trainable and can be improved with practice is addressed, including diverse methods tried thus far.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Removing electroencephalographic artifacts by blind source separation.

            Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measuring emotion: the Self-Assessment Manikin and the Semantic Differential.

              The Self-Assessment Manikin (SAM) is a non-verbal pictorial assessment technique that directly measures the pleasure, arousal, and dominance associated with a person's affective reaction to a wide variety of stimuli. In this experiment, we compare reports of affective experience obtained using SAM, which requires only three simple judgments, to the Semantic Differential scale devised by Mehrabian and Russell (An approach to environmental psychology, 1974) which requires 18 different ratings. Subjective reports were measured to a series of pictures that varied in both affective valence and intensity. Correlations across the two rating methods were high both for reports of experienced pleasure and felt arousal. Differences obtained in the dominance dimension of the two instruments suggest that SAM may better track the personal response to an affective stimulus. SAM is an inexpensive, easy method for quickly assessing reports of affective response in many contexts.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                24 May 2019
                2019
                : 10
                : 1138
                Affiliations
                [1] 1Escuela de Psicología, Pontificia Universidad Católica de Chile , Santiago, Chile
                [2] 2Laboratorio de Fenomenología Corporal , Santiago, Chile
                [3] 3Escuela de Kinesiología, Facultad de Medicina, Universidad Austral de Chile , Valdivia, Chile
                [4] 4Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile , Santiago, Chile
                [5] 5Instituto Milenio para la Investigación en Depresión y Personalidad, MIDAP , Santiago, Chile
                Author notes

                Edited by: Carlos Gantiva, University of San Buenaventura, Colombia

                Reviewed by: Archi Banerjee, Jadavpur University, India; Tae-Ho Lee, Virginia Tech, United States

                *Correspondence: Diego Cosmelli, dcosmelli@ 123456uc.cl

                This article was submitted to Emotion Science, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2019.01138
                6543930
                b1ecfa9e-b057-46d2-9669-1ca0081b7583
                Copyright © 2019 Vásquez-Rosati, Montefusco-Siegmund, López and Cosmelli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 November 2018
                : 30 April 2019
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 83, Pages: 14, Words: 0
                Funding
                Funded by: Fondo Nacional de Desarrollo Científico y Tecnológico 10.13039/501100002850
                Award ID: 1181355
                Funded by: Ministerio de Economía, Fomento y Turismo 10.13039/501100005886
                Award ID: Millennium Scientific Initiative, Grant N°IS130005
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                cognitive flexibility,emotions,music,micro-phenomenological interview,p300,neurophenomenology

                Comments

                Comment on this article