30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP (BNP), C-type NP (CNP), dendroaspis NP and urodilatin, with NP receptor-A (guanylate cyclase-A), NP receptor-B (guanylate cyclase-B) and NP receptor-C (clearance receptor). These peptides are genetically distinct, but structurally and functionally related for regulating circulatory homeostasis in vertebrates. In humans, ANP and BNP are encoded by NP precursor A (NPPA) and NPPB genes on chromosome 1, whereas CNP is encoded by NPPC on chromosome 2. NPs are synthesized and secreted through certain mechanisms by cardiomyocytes, fibroblasts, endotheliocytes, immune cells (neutrophils, T-cells and macrophages) and immature cells (embryonic stem cells, muscle satellite cells and cardiac precursor cells). They are mainly produced by cardiovascular, brain and renal tissues in response to wall stretch and other causes. NPs provide natriuresis, diuresis, vasodilation, antiproliferation, antihypertrophy, antifibrosis and other cardiometabolic protection. NPs represent body’s own antihypertensive system, and provide compensatory protection to counterbalance vasoconstrictor-mitogenic-sodium retaining hormones, released by renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). NPs play central roles in regulation of heart failure (HF), and are inactivated through not only NP receptor-C, but also neutral endopeptidase (NEP), dipeptidyl peptidase-4 and insulin degrading enzyme. Both BNP and N-terminal proBNP are useful biomarkers to not only make the diagnosis and assess the severity of HF, but also guide the therapy and predict the prognosis in patients with HF. Current NP-augmenting strategies include the synthesis of NPs or agonists to increase NP bioactivity and inhibition of NEP to reduce NP breakdown. Nesiritide has been established as an available therapy, and angiotensin receptor blocker NEP inhibitor (ARNI, LCZ696) has obtained extremely encouraging results with decreased morbidity and mortality. Novel pharmacological approaches based on NPs may promote a therapeutic shift from suppressing the RAAS and SNS to re-balancing neuroendocrine dysregulation in patients with HF. The current review discussed the synthesis, secretion, function and metabolism of NPs, and their diagnostic, therapeutic and prognostic values in HF.

          Related collections

          Most cited references255

          • Record: found
          • Abstract: not found
          • Article: not found

          ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM).

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Natriuretic peptides.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes.

              The ability of mammals to resist body fat accumulation is linked to their ability to expand the number and activity of "brown adipocytes" within white fat depots. Activation of β-adrenergic receptors (β-ARs) can induce a functional "brown-like" adipocyte phenotype. As cardiac natriuretic peptides (NPs) and β-AR agonists are similarly potent at stimulating lipolysis in human adipocytes, we investigated whether NPs could induce human and mouse adipocytes to acquire brown adipocyte features, including a capacity for thermogenic energy expenditure mediated by uncoupling protein 1 (UCP1). In human adipocytes, atrial NP (ANP) and ventricular NP (BNP) activated PPARγ coactivator-1α (PGC-1α) and UCP1 expression, induced mitochondriogenesis, and increased uncoupled and total respiration. At low concentrations, ANP and β-AR agonists additively enhanced expression of brown fat and mitochondrial markers in a p38 MAPK-dependent manner. Mice exposed to cold temperatures had increased levels of circulating NPs as well as higher expression of NP signaling receptor and lower expression of the NP clearance receptor (Nprc) in brown adipose tissue (BAT) and white adipose tissue (WAT). NPR-C(-/-) mice had markedly smaller WAT and BAT depots but higher expression of thermogenic genes such as Ucp1. Infusion of BNP into mice robustly increased Ucp1 and Pgc-1α expression in WAT and BAT, with corresponding elevation of respiration and energy expenditure. These results suggest that NPs promote "browning" of white adipocytes to increase energy expenditure, defining the heart as a central regulator of adipose tissue biology.
                Bookmark

                Author and article information

                Contributors
                xiaoxiao0915@126.com
                469719796@qq.com
                13598325163@163.com
                86-10-88626362 , lleim@sina.com
                Journal
                J Biol Eng
                J Biol Eng
                Journal of Biological Engineering
                BioMed Central (London )
                1754-1611
                12 January 2018
                12 January 2018
                2018
                : 12
                : 2
                Affiliations
                [1 ]ISNI 0000 0004 1761 8894, GRID grid.414252.4, Department of Geriatric Cardiology, , Chinese People’s Liberation Army General Hospital, ; Beijing, 100853 China
                [2 ]ISNI 0000 0004 1761 8894, GRID grid.414252.4, Department of Cardiology and Hainan Branch, , Chinese People’s Liberation Army, General Hospital, ; Beijing, China
                [3 ]ISNI 0000 0004 1761 8894, GRID grid.414252.4, Department of Pharmaceutical Care, Chinese People’s, , Liberation Army General Hospital, ; Beijing, China
                Article
                93
                10.1186/s13036-017-0093-0
                5766980
                29344085
                b1f9fbf2-4de1-4a7c-ba74-680ebfe989be
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 September 2017
                : 21 December 2017
                Funding
                Funded by: Health Special Scientific Research Project of Chinese People’s Liberation Army
                Award ID: 12BJZ34 and 14BJZ12
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Biotechnology
                cardiac precursor cells,dipeptidyl peptidase-4,heart failure,insulin degrading enzyme,angiotensin receptor blocker neutral endopeptidase inhibitor,micro-rna,natriuretic peptides,nesiritide,designer natriuretic peptides,natriuretic peptide precursor

                Comments

                Comment on this article