72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulation of ( R) -2-hydroxyglutarate in cells results from mutations to isocitrate dehydrogenase that correlate with cancer. A recent study reports that ( R) -, but not ( S) -2-hydroxyglutarate, acts as a co-substrate for the hypoxia-inducible factor prolyl hydroxylases via enzyme-catalysed oxidation to 2-oxoglutarate. Here we investigate the mechanism of 2-hydroxyglutarate-enabled activation of 2-oxoglutarate oxygenases, including prolyl hydroxylase domain 2, the most important human prolyl hydroxylase isoform. We observe that 2-hydroxyglutarate-enabled catalysis by prolyl hydroxylase domain 2 is not enantiomer-specific and is stimulated by ferrous/ferric ion and reducing agents including L-ascorbate. The results reveal that 2-hydroxyglutarate is oxidized to 2-oxoglutarate non-enzymatically, likely via iron-mediated Fenton-chemistry, at levels supporting in vitro catalysis by 2-oxoglutarate oxygenases. Succinic semialdehyde and succinate are also identified as products of 2-hydroxyglutarate oxidation. Overall, the results rationalize the reported effects of 2-hydroxyglutarate on catalysis by prolyl hydroxylases in vitro and suggest that non-enzymatic 2-hydroxyglutarate oxidation may be of biological interest.

          Abstract

          Studies have identified that mutations to metabolic enzymes can lead to abnormal biological activity and disease. Here, the authors show that in addition to this, non-enzymatic chemistry could also influence abnormal metabolic processes and disease development.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.

          Multicellular organisms initiate adaptive responses when oxygen (O(2)) availability decreases, but the underlying mechanism of O(2) sensing remains elusive. We find that functionality of complex III of the mitochondrial electron transport chain (ETC) is required for the hypoxic stabilization of HIF-1 alpha and HIF-2 alpha and that an increase in reactive oxygen species (ROS) links this complex to HIF-alpha stabilization. Using RNAi to suppress expression of the Rieske iron-sulfur protein of complex III, hypoxia-induced HIF-1 alpha stabilization is attenuated, and ROS production, measured using a novel ROS-sensitive FRET probe, is decreased. These results demonstrate that mitochondria function as O(2) sensors and signal hypoxic HIF-1 alpha and HIF-2 alpha stabilization by releasing ROS to the cytosol.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible.

            Mutations in IDH1 and IDH2, the genes coding for isocitrate dehydrogenases 1 and 2, are common in several human cancers, including leukemias, and result in overproduction of the (R)-enantiomer of 2-hydroxyglutarate [(R)-2HG]. Elucidation of the role of IDH mutations and (R)-2HG in leukemogenesis has been hampered by a lack of appropriate cell-based models. Here, we show that a canonical IDH1 mutant, IDH1 R132H, promotes cytokine independence and blocks differentiation in hematopoietic cells. These effects can be recapitulated by (R)-2HG, but not (S)-2HG, despite the fact that (S)-2HG more potently inhibits enzymes, such as the 5'-methylcytosine hydroxylase TET2, that have previously been linked to the pathogenesis of IDH mutant tumors. We provide evidence that this paradox relates to the ability of (S)-2HG, but not (R)-2HG, to inhibit the EglN prolyl hydroxylases. Additionally, we show that transformation by (R)-2HG is reversible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transformation by the R Enantiomer of 2-Hydroxyglutarate Linked to EglN Activation

              The identification of succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH) mutations in human cancers has rekindled the idea that altered cellular metabolism can transform cells. Inactivating SDH and FH mutations cause the accumulation of succinate and fumarate, respectively, which can inhibit 2-oxoglutarate (2-OG)-dependent enzymes, including the EglN prolyl 4-hydroxylases that mark the HIF transcription factor for polyubiquitylation and proteasomal degradation 1 . Inappropriate HIF activation is suspected of contributing to the pathogenesis of SDH-defective and FH-defective tumors but can suppress tumor growth in some other contexts. IDH1 and IDH2, which catalyze the interconversion of isocitrate and 2-OG, are frequently mutated in human brain tumors and leukemias. The resulting mutants display the neomorphic ability to convert 2-OG to the R-enantiomer of 2-hydroxyglutarate (R-2HG) 2, 3 . Here we show that R-2HG, but not S-2HG, stimulates EglN activity leading to diminished HIF levels, which enhances the proliferation and soft agar growth of human astrocytes.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                05 March 2014
                : 5
                : 3423
                Affiliations
                [1 ]Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, UK
                Author notes
                Article
                ncomms4423
                10.1038/ncomms4423
                3959194
                24594748
                b1faf1cb-db20-43b9-8d43-2da09af7a9b4
                Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
                History
                : 29 August 2013
                : 10 February 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article