24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To differentiate traditional Chinese medicines (TCM) derived from congeneric species in TCM compound preparations is usually challenging. The roots of Panax ginseng (PG), Panax quinquefolium (PQ) and Panax notoginseng (PN) are used as popular TCM. They contain similar triterpenoid saponins (ginsenosides) as the major bioactive constituents. Thus far, only a few chemical markers have been discovered to differentiate these three species. Herein we present a multiple marker detection approach to effectively differentiate the three Panax species, and to identify them in compound preparations. Firstly, 85 batches of crude drug samples (including 32 PG, 30 PQ, and 23 PN) were analyzed by monitoring 40 major ginsenosides in the extracted ion chromatograms (EICs) using a validated LC–MS fingerprinting method. Secondly, the samples were clustered into different groups by pattern recognition chemometric approaches using PLS-DA and OPLS-DA models, and 17 diagnostic chemical markers were discovered. Aside from the previously known Rf and p-F 11, ginsenoside Rs 1 could be a new marker to differentiate PG from PQ. Finally, the above multiple chemical markers were used to identify the Panax species in 60 batches of TCM compound preparations.

          Graphical abstract

          The roots of Panax ginseng (PG), Panax quinquefolium (PQ) and Panax notoginseng (PN) derive from congeneric species, and are used as different herbal medicines. In this study, we employed LC–MS analyses and chemometric approaches to discover 17 marker ginsenosides to differentiate these three species. These markers were further used to identify PG, PQ, and PN in 60 batches of traditional Chinese medicine compound preparations.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium.

          Medical application of Panax ginseng was first found in "Shen-Nong Herbal Classic"around 200 AD Panax quinquefolium was first introduced in "Essential of Materia Medica" in 1694 in China. The most important bioactive components contained in P ginseng and P quinquefolium are ginseng saponins (GS). The contents of ginsenoside Rb1, Re, and Rd in P quinquefolium are higher than they are in P ginseng. In P ginseng, the contents of Rg1,Rb2, and Rc are higher than they are in P quinquefolium. P ginseng had a higher ratio of Rg1: Rb1, and which was lower in P quinquefolium. After steaming for several hours, the total GS will decrease. However, some ginsenosides (Rg2, 20R-Rg2, Rg3, Rh1 and Rh2) increase, while others (Rb1, Rb2, Rb3, Rc, Rd, Re, and Rg1) decrease. However, variation, especially in P quinquefolium, is high. P ginseng and P quinquefolium are general tonics and adaptogens. Rg1 and Rb1 enhance central nervous system (CNS) activities, but the effect of the latter is weaker. Thus, for the higher contents of Rg1, P ginseng is a stimulant, whereas the Rb1 contents of P quinquefolium are mainly calming to the CNS. Re, Rg1, panaxan A and B from P ginseng are good for diabetes. Re and Rg1 enhance angiogenesis, whereas Rb1, Rg3 and Rh2 inhibit it. Rh2, an antitumor agent, can be obtained from Rb1 by steaming. The content of Re in P quinquefolium are higher than in P ginseng by 3-4 times. The vasorelax, antioxidant, antihyperlipidemic, and angiogenic effects of Re are reported. Thus, for the CNS "hot," wound healing and hypoglycemic effects, P ginseng is better than P quinquefolium. For anticancer effects, P quinquefolium is better.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides.

            To discover new natural compounds from herbal medicines tends to be more and more difficult. In this paper, a strategy integrating orthogonal column chromatography and liquid chromatography/mass spectrometry (LC/MS) analysis was proposed, and was applied for rapid discovery of new ginsenosides from Panax ginseng (PG), Panax quinquefolium (PQ), and Panax notoginseng (PN). The ginsenosides extracts were fractionated by MCI gel×silica gel orthogonal column chromatography. The fractions were then separated on a C(18) HPLC column, eluted with a three-component mobile phase (CH(3)CN/CH(3)OH/3mM CH(3)COONH(4)H(2)O), and detected by electrospray ionization tandem mass spectrometry. The structures of unknown ginsenosides were elucidated by analyzing negative and positive ion mass spectra, which provided complementary information on the sapogenins and oligosaccharide chains, respectively. A total of 623 comprising 437 potential new ginsenosides were characterized from the ethanol extracts of PG, PQ and PN. New acylations, diversified saccharide chains and C-17 side chains constituted novelty of the newly identified ginsenosides. An interpretation guideline was proposed for structural characterization of unknown ginsenosides by LC/MS. To confirm reliability of this strategy, two targeted unknown trace ginsenosides were obtained in pure form by LC/MS-guided isolation. Based on extensive NMR spectroscopic analysis and other techniques, they were identified as 3-O-[6-O-(E)-butenoyl-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl]-20(S)-protopanaxadiol-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (named ginsenoside IV) and 3-O-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl-3β,12β,20(S),24(R)-tetra hydroxy-dammar-25-ene-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (ginsenoside V), respectively. The fully established structures were consistent with the MS-oriented structural elucidation. This study expanded our understanding on ginsenosides of Panax species, and the proposed strategy was proved efficient and reliable in the discovery of new minor compounds from herbal extracts. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS.

              An LC/MS-based method is established for the differentiation and authentication of specimens and commercial samples of Panax ginseng (Oriental ginseng) and Panax quinquefolius (American ginseng). This method is based on the separation of ginsenosides present in the ginseng methanolic extracts using high-performance liquid chromatography (HPLC), followed by detection with electrospray mass spectrometry. Differentiation of ginsenosides is achieved through simultaneous detection of intact ginsenoside molecular ions and the ions of their characteristic thermal degradation products. An important parameter used for differentiating P. ginseng and P. quinquefolius is the presence of ginsenoside Rf and 24-(R)-pseudoginsenoside F11 in the RICs of Oriental and American ginsengs, respectively. It is important to stress that ginsenoside Rf and 24(R)-pseudoginsenoside F11, which possess the same molecular weight and were found to have similar retention times under most LC conditions, can be unambiguously distinguished in the present HPLC/MS method. The method developed is robust, reliable, reproducible, and highly sensitive down to the nanogram level.
                Bookmark

                Author and article information

                Contributors
                Journal
                Acta Pharm Sin B
                Acta Pharm Sin B
                Acta Pharmaceutica Sinica. B
                Elsevier
                2211-3835
                2211-3843
                14 June 2016
                November 2016
                14 June 2016
                : 6
                : 6
                : 568-575
                Affiliations
                [a ]State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
                [b ]Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
                [c ]Agilent Technologies, Beijing 100102, China
                Author notes
                [* ]Corresponding author. Tel.: +86 21 2023 1000x2221; fax: +86 21 50272789. daguo@ 123456simm.ac.cn
                [** ]Corresponding author. Tel./fax: +86 10 8280 2024. yemin@ 123456bjmu.edu.cn
                Article
                S2211-3835(16)30059-4
                10.1016/j.apsb.2016.05.005
                5071635
                27818924
                b20a1089-fc89-429f-a39c-42edc4fc18cd
                © 2016 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 1 March 2016
                : 26 April 2016
                : 27 May 2016
                Categories
                Original Article

                panax species,ginsenoside,lc–ms fingerprinting,chemical marker,tcm compound  preparation

                Comments

                Comment on this article