15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-Domain Antibodies As Therapeutics against Human Viral Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs) offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1), influenza viruses, hepatitis C virus (HCV), respiratory syncytial virus (RSV), and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus

          New England Journal of Medicine, 368(20), 1888-1897
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge.

            A major problem in hepatitis C virus (HCV) immunotherapy or vaccine design is the extreme variability of the virus. We identified human monoclonal antibodies (mAbs) that neutralize genetically diverse HCV isolates and protect against heterologous HCV quasispecies challenge in a human liver-chimeric mouse model. The results provide evidence that broadly neutralizing antibodies to HCV protect against heterologous viral infection and suggest that a prophylactic vaccine against HCV may be achievable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The antigenic structure of the HIV gp120 envelope glycoprotein.

              The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                13 December 2017
                2017
                : 8
                : 1802
                Affiliations
                [1] 1Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University , Shanghai, China
                Author notes

                Edited by: Colin Roger MacKenzie, National Research Council Canada (NRC-CNRC), Canada

                Reviewed by: Andrew Hayhurst, Texas Biomedical Research Institute, United States; Serge Muyldermans, Vrije Universiteit Brussel, Belgium

                *Correspondence: Tianlei Ying, tlying@ 123456fudan.edu.cn

                Specialty section: This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.01802
                5733491
                29326699
                b21897c6-884a-4e56-b3fe-a22b499979e5
                Copyright © 2017 Wu, Jiang and Ying.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 September 2017
                : 30 November 2017
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 123, Pages: 13, Words: 10486
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31570936, 81630090, and 81561128006
                Categories
                Immunology
                Review

                Immunology
                single-domain antibody,nanobody,viral disease,antiviral therapeutics,human immunodeficiency virus-1

                Comments

                Comment on this article