30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Roles and mechanisms of alternative splicing in cancer — implications for care

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: not found

          Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged.

          Alternative splicing of mRNA precursors is a nearly ubiquitous and extremely flexible point of gene control in humans. It provides cells with the opportunity to create protein isoforms of differing, even opposing, functions from a single gene. Cancer cells often take advantage of this flexibility to produce proteins that promote growth and survival. Many of the isoforms produced in this manner are developmentally regulated and are preferentially re-expressed in tumors. Emerging insights into this process indicate that pathways that are frequently deregulated in cancer often play important roles in promoting aberrant splicing, which in turn contributes to all aspects of tumor biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Functional Impact of Alternative Splicing in Cancer

            Alternative splicing changes are frequently observed in cancer and are starting to be recognized as important signatures for tumor progression and therapy. However, their functional impact and relevance to tumorigenesis remain mostly unknown. We carried out a systematic analysis to characterize the potential functional consequences of alternative splicing changes in thousands of tumor samples. This analysis revealed that a subset of alternative splicing changes affect protein domain families that are frequently mutated in tumors and potentially disrupt protein-protein interactions in cancer-related pathways. Moreover, there was a negative correlation between the number of these alternative splicing changes in a sample and the number of somatic mutations in drivers. We propose that a subset of the alternative splicing changes observed in tumors may represent independent oncogenic processes that could be relevant to explain the functional transformations in cancer, and some of them could potentially be considered alternative splicing drivers (AS drivers).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synonymous mutations frequently act as driver mutations in human cancers.

              Synonymous mutations change the sequence of a gene without directly altering the sequence of the encoded protein. Here, we present evidence that these "silent" mutations frequently contribute to human cancer. Selection on synonymous mutations in oncogenes is cancer-type specific, and although the functional consequences of cancer-associated synonymous mutations may be diverse, they recurrently alter exonic motifs that regulate splicing and are associated with changes in oncogene splicing in tumors. The p53 tumor suppressor (TP53) also has recurrent synonymous mutations, but, in contrast to those in oncogenes, these are adjacent to splice sites and inactivate them. We estimate that between one in two and one in five silent mutations in oncogenes have been selected, equating to ~6%- 8% of all selected single-nucleotide changes in these genes. In addition, our analyses suggest that dosage-sensitive oncogenes have selected mutations in their 3' UTRs. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Clinical Oncology
                Nat Rev Clin Oncol
                Springer Science and Business Media LLC
                1759-4774
                1759-4782
                April 17 2020
                Article
                10.1038/s41571-020-0350-x
                32303702
                b219dd8e-16fa-459e-8e27-a18d9549d0c7
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article