11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Cytochrome P450 (CYP)1A in Hyperoxic Lung Injury: Analysis of the Transcriptome and Proteome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperoxia contributes to lung injury in experimental animals and diseases such as acute respiratory distress syndrome in humans. Cytochrome P450 (CYP)1A enzymes are protective against hyperoxic lung injury (HLI). The molecular pathways and differences in gene expression that modulate these protective effects remain largely unknown. Our objective was to characterize genotype specific differences in the transcriptome and proteome of acute hyperoxic lung injury using the omics platforms: microarray and Reverse Phase Proteomic Array. Wild type (WT), Cyp1a1−/− and Cyp1a2−/− (8–10 wk, C57BL/6J background) mice were exposed to hyperoxia (FiO 2 > 0.95) for 48 hours. Comparison of transcriptome changes in hyperoxia-exposed animals (WT versus knock-out) identified 171 genes unique to Cyp1a1−/− and 119 unique to Cyp1a2−/− mice. Gene Set Enrichment Analysis revealed pathways including apoptosis, DNA repair and early estrogen response that were differentially regulated between WT, Cyp1a1−/− and Cyp1a2−/− mice. Candidate genes from these pathways were validated at the mRNA and protein level. Quantification of oxidative DNA adducts with 32P-postlabeling also revealed genotype specific differences. These findings provide novel insights into mechanisms behind the differences in susceptibility of Cyp1a1−/− and Cyp1a2−/− mice to HLI and suggest novel pathways that need to be investigated as possible therapeutic targets for acute lung injury.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          DNA double-strand breaks: signaling, repair and the cancer connection.

          To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation-the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A.

            Hypoxia-inducible factor 1 (HIF1) is a master regulator of adaptive gene expression under hypoxia. However, a role for HIF1 in the epigenetic regulation remains unknown. Genome-wide analysis of HIF1 binding sites (chromatin immunoprecipitation [ChIP] with deep sequencing) of endothelial cells clarified that HIF1 mainly binds to the intergenic regions distal from transcriptional starting sites under both normoxia and hypoxia. Next, we examined the temporal profile of gene expression under hypoxic conditions by using DNA microarrays. We clarified that early hypoxia-responsive genes are functionally associated with glycolysis, including GLUT3 (SLC2A3). Acetylated lysine 27 of histone 3 covered the HIF1 binding sites, and HIF1 functioned as an enhancer of SLC2A3 by interaction with lysine (K)-specific demethylase 3A (KDM3A). Knockdown of HIF1α and KDM3A showed that glycolytic genes are regulated by both HIF1 and KDM3A and respond to hypoxia in a manner independent of cell type specificity. We elucidated that both the chromatin conformational structure and histone modification change under hypoxic conditions and enhance the expression of SLC2A3 based on the combined results of chromatin conformation capture (3C) and ChIP assays. KDM3A is recruited to the SLC2A3 locus in an HIF1-dependent manner and demethylates H3K9me2 so as to upregulate its expression. These findings provide novel insights into the interaction between HIF1 and KDM3A and also the epigenetic regulation of HIF1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes.

              The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-kappaB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation.
                Bookmark

                Author and article information

                Contributors
                lingappa@bcm.edu
                coarfa@bcm.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 April 2017
                4 April 2017
                2017
                : 7
                : 642
                Affiliations
                [1 ]ISNI 0000 0001 2160 926X, GRID grid.39382.33, Department of Pediatrics, Section of Neonatology, Texas Children’s Hospital, , Baylor College of Medicine, ; Houston, Texas USA
                [2 ]ISNI 0000 0001 2160 926X, GRID grid.39382.33, Advanced Technology Cores, , Baylor College of Medicine, ; Houston, Texas USA
                [3 ]ISNI 0000 0001 2160 926X, GRID grid.39382.33, Interdepartmental Program in Translational Biology and Molecular Medicine, , Baylor College of Medicine, ; Houston, TX USA
                [4 ]GRID grid.418866.5, Institute of Biotechnology, , Texas A&M University Health Science Center, ; Houston, Texas USA
                Article
                516
                10.1038/s41598-017-00516-x
                5428698
                28377578
                b21b304b-a98f-4ec9-8653-e86fedfa73cc
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 September 2016
                : 28 February 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article