15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Printed supercapacitors: materials, printing and applications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review summarizes how printing methods can revolutionize the manufacturing of supercapacitors – promising energy storage devices for flexible electronics.

          Abstract

          Supercapacitors hold great promise for future electronic systems that are moving towards being flexible, portable, and highly integrated, due to their superior power density, stability and cycle lives. Printed electronics represents a paradigm shift in the manufacturing of supercapacitors in that it provides a whole range of simple, low-cost, time-saving, versatile and environmentally-friendly manufacturing technologies for supercapacitors with new and desirable structures (micro-, asymmetric, flexible, etc.), thus unleashing the full potential of supercapacitors for future electronics. In this review, we start by introducing the structural features of printed supercapacitors, followed by a summary of materials related to printed supercapacitors, including electrodes, electrolytes, current collectors and substrates; then the approaches to improve the performance of printed supercapacitors by tuning printing processes are discussed; next a summary of the recent developments of printed supercapacitors is given in terms of specific printing methods utilized; finally, challenges and future research opportunities of this exciting research direction are presented.

          Related collections

          Most cited references245

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The chemistry and applications of metal-organic frameworks.

              Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.
                Bookmark

                Author and article information

                Contributors
                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                June 17 2019
                2019
                : 48
                : 12
                : 3229-3264
                Affiliations
                [1 ]Key Laboratory for Organic Electronics and Information Displays
                [2 ]Institute of Advanced Materials (IAM)
                [3 ]Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
                [4 ]Nanjing University of Posts & Telecommunications
                [5 ]Nanjing 210023
                Article
                10.1039/C7CS00819H
                31119231
                b21f0cf8-5f74-40c7-8cb8-e26d2880b2af
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article