35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.

          Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.

          This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of brain plasticity in stroke: a novel model for neurorehabilitation.

          Noninvasive brain stimulation (NIBS) techniques can be used to monitor and modulate the excitability of intracortical neuronal circuits. Long periods of cortical stimulation can produce lasting effects on brain function, paving the way for therapeutic applications of NIBS in chronic neurological disease. The potential of NIBS in stroke rehabilitation has been of particular interest, because stroke is the main cause of permanent disability in industrial nations, and treatment outcomes often fail to meet the expectations of patients. Despite promising reports from many clinical trials on NIBS for stroke recovery, the number of studies reporting a null effect remains a concern. One possible explanation is that the interhemispheric competition model--which posits that suppressing the excitability of the hemisphere not affected by stroke will enhance recovery by reducing interhemispheric inhibition of the stroke hemisphere, and forms the rationale for many studies--is oversimplified or even incorrect. Here, we critically review the proposed mechanisms of synaptic and functional reorganization after stroke, and suggest a bimodal balance-recovery model that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion. The proposed model could enable NIBS to be tailored to the needs of individual patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review.

            The aim of the study was to present a systematic review of studies that investigate the effects of robot-assisted therapy on motor and functional recovery in patients with stroke. A database of articles published up to October 2006 was compiled using the following Medline key words: cerebral vascular accident, cerebral vascular disorders, stroke, paresis, hemiplegia, upper extremity, arm, and robot. References listed in relevant publications were also screened. Studies that satisfied the following selection criteria were included: (1) patients were diagnosed with cerebral vascular accident; (2) effects of robot-assisted therapy for the upper limb were investigated; (3) the outcome was measured in terms of motor and/or functional recovery of the upper paretic limb; and (4) the study was a randomized clinical trial (RCT). For each outcome measure, the estimated effect size (ES) and the summary effect size (SES) expressed in standard deviation units (SDU) were calculated for motor recovery and functional ability (activities of daily living [ADLs]) using fixed and random effect models. Ten studies, involving 218 patients, were included in the synthesis. Their methodological quality ranged from 4 to 8 on a (maximum) 10-point scale. Meta-analysis showed a nonsignificant heterogeneous SES in terms of upper limb motor recovery. Sensitivity analysis of studies involving only shoulder-elbow robotics subsequently demonstrated a significant homogeneous SES for motor recovery of the upper paretic limb. No significant SES was observed for functional ability (ADL). As a result of marked heterogeneity in studies between distal and proximal arm robotics, no overall significant effect in favor of robot-assisted therapy was found in the present meta-analysis. However, subsequent sensitivity analysis showed a significant improvement in upper limb motor function after stroke for upper arm robotics. No significant improvement was found in ADL function. However, the administered ADL scales in the reviewed studies fail to adequately reflect recovery of the paretic upper limb, whereas valid instruments that measure outcome of dexterity of the paretic arm and hand are mostly absent in selected studies. Future research into the effects of robot-assisted therapy should therefore distinguish between upper and lower robotics arm training and concentrate on kinematical analysis to differentiate between genuine upper limb motor recovery and functional recovery due to compensation strategies by proximal control of the trunk and upper limb.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

              Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) and other disorders can disconnect the brain from the body, eliminating the ability to carry out volitional movements. A neural interface system (NIS) 1–5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with longstanding tetraplegia can use an NIS to move and click a computer cursor and to control physical devices 6–8 . Able-bodied monkeys have used an NIS to control a robotic arm 9 , but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor five years earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.
                Bookmark

                Author and article information

                Contributors
                roger.gassert@hest.ethz.ch
                volker.dietz@balgrist.ch
                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central (London )
                1743-0003
                5 June 2018
                5 June 2018
                2018
                : 15
                : 46
                Affiliations
                [1 ]ISNI 0000 0001 2156 2780, GRID grid.5801.c, Department of Health Sciences and Technology, , ETH Zurich, ; 8092 Zurich, Switzerland
                [2 ]ISNI 0000 0004 0518 9682, GRID grid.412373.0, Spinal Cord Injury Center, , Balgrist University Hospital, ; 8008 Zurich, Switzerland
                Author information
                http://orcid.org/0000-0002-6373-8518
                Article
                383
                10.1186/s12984-018-0383-x
                5987585
                29866106
                b228c81b-7ea2-4a06-8147-5d5961e50fc2
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 January 2018
                : 7 May 2018
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Neurosciences
                robot-assisted therapy,neurorehabilitation technology,assist-as-needed,stroke,spinal cord injury,locomotion,upper limb function,sensorimotor neurophysiology,neuroplasticity

                Comments

                Comment on this article