9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Subcycle quantum electrodynamics

      , , , , , ,
      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Squeezed states of electromagnetic radiation have quantum fluctuations below those of the vacuum field. They offer a unique resource for quantum information systems and precision metrology, including gravitational wave detectors, which require unprecedented sensitivity. Since the first experiments on this non-classical form of light, quantum analysis has been based on homodyning techniques and photon correlation measurements. These methods currently function in the visible to near-infrared and microwave spectral ranges. They require a well-defined carrier frequency, and photons contained in a quantum state need to be absorbed or amplified. Quantum non-demolition experiments may be performed to avoid the influence of a measurement in one quadrature, but this procedure comes at the expense of increased uncertainty in another quadrature. Here we generate mid-infrared time-locked patterns of squeezed vacuum noise. After propagation through free space, the quantum fluctuations of the electric field are studied in the time domain using electro-optic sampling with few-femtosecond laser pulses. We directly compare the local noise amplitude to that of bare (that is, unperturbed) vacuum. Our nonlinear approach operates off resonance and, unlike homodyning or photon correlation techniques, without absorption or amplification of the field that is investigated. We find subcycle intervals with noise levels that are substantially less than the amplitude of the vacuum field. As a consequence, there are enhanced fluctuations in adjacent time intervals, owing to Heisenberg’s uncertainty principle, which indicate generation of highly correlated quantum radiation. Together with efforts in the far infrared, this work enables the study of elementary quantum dynamics of light and matter in an energy range at the boundary between vacuum and thermal background conditions.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Superconducting circuits for quantum information: an outlook.

          The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Squeezed states of light

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sub-cycle switch-on of ultrastrong light-matter interaction.

              Controlling the way light interacts with material excitations is at the heart of cavity quantum electrodynamics (QED). In the strong-coupling regime, quantum emitters in a microresonator absorb and spontaneously re-emit a photon many times before dissipation becomes effective, giving rise to mixed light-matter eigenmodes. Recent experiments in semiconductor microcavities reached a new limit of ultrastrong coupling, where photon exchange occurs on timescales comparable to the oscillation period of light. In this limit, ultrafast modulation of the coupling strength has been suggested to lead to unconventional QED phenomena. Although sophisticated light-matter coupling has been achieved in all three spatial dimensions, control in the fourth dimension, time, is little developed. Here we use a quantum-well waveguide structure to optically tune light-matter interaction from weak to ultrastrong and turn on maximum coupling within less than one cycle of light. In this regime, a class of extremely non-adiabatic phenomena becomes observable. In particular, we directly monitor how a coherent photon population converts to cavity polaritons during abrupt switching. This system forms a promising laboratory in which to study novel sub-cycle QED effects and represents an efficient room-temperature switching device operating at unprecedented speed.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                January 18 2017
                January 18 2017
                : 541
                : 7637
                : 376-379
                Article
                10.1038/nature21024
                28102239
                b22add64-0dd6-460d-a626-af72e54826f2
                © 2017
                History

                Comments

                Comment on this article