11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene.

      Journal of Molecular Evolution
      Amino Acid Sequence, Evolution, Molecular, Genes, Archaeal, Genes, Bacterial, Genetic Structures, Genome, Archaeal, HSP40 Heat-Shock Proteins, genetics, HSP70 Heat-Shock Proteins, Internal-External Control, Molecular Chaperones, Phylogeny, Protein Folding, Protein Isoforms

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The stress chaperone protein Hsp70 (DnaK) (abbreviated DnaK) and its co-chaperones Hsp40(DnaJ) (or DnaJ) and GrpE are universal in bacteria and eukaryotes but occur only in some archaea clustered in the order 5'-grpE-dnaK-dnaJ-3' in a locus termed Locus I. Three structural varieties of Locus I, termed Types I, II, and III, were identified, respectively, in Methanosarcinales, in Thermoplasmatales and Methanothermobacter thermoautotrophicus, and in Halobacteriales. These Locus I types corresponded to three groups identified by phylogenetic trees of archaeal DnaK proteins including the same archaeal subdivisions. These archaeal DnaK groups were not significantly interrelated, clustering instead with DnaKs from three bacterial lineages, Methanosarcinales with Firmicutes, Thermoplasmatales and M. thermoautotrophicus with Thermotoga, and Halobacteriales with Actinobacteria, suggesting that the three archaeal types of Locus I were acquired by independent events of lateral gene transfer. These associations, however, lacked strong bootstrap support and were sensitive to dataset choice and tree-reconstruction method. Structural features of dnaK loci in bacteria revealed that Methanosarcinales and Firmicutes shared a similar structure, also common to most other bacterial groups. Structural differences were observed instead in Thermotoga compared to Thermoplasmatales and M. thermoautotrophicus, and in Actinobacteria compared to Halobacteriales. It was also found that the association between the DnaK sequences from Halobacteriales and Actinobacteria likely reflects common biases in their amino acid compositions. Although the loci structural features and the DnaK trees suggested the possibility of lateral gene transfer between Firmicutes and Methanosarcinales, the similarity between the archaeal and the ancestral bacterial loci favors the more parsimonious hypothesis that all archaeal sequences originated from a unique prokaryotic ancestor.

          Related collections

          Author and article information

          Comments

          Comment on this article