+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of synthetic vaccine candidates against SARS CoV infection


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Three peptides, D1 (amino acid residues 175–201), D2 (a.a. 434–467), and TM (a.a. 1128–1159), corresponding to the spike protein (S) of severe acute respiratory syndrome corona virus (SARS CoV) were synthesized and their immunological functions were investigated in three different animals models (mice, guinea pigs, and rabbits). The peptides mixture formulated either with Freund’s adjuvant or synthetic adjuvant Montanide ISA-51/oligodeoxy nucleotide CpG (ISA/CpG) could elicit antisera in immunized animals which were capable of inhibiting SARS/HIV pseudovirus entry into HepG2 cells. The neutralizing epitopes were identified using peptides to block the neutralizing effect of guinea pig antisera. The major neutralizing epitope was located on the D2 peptide, and the amino acid residue was fine mapped to 434–453. In BALB/c mice T-cell proliferation assay revealed that only D2 peptide contained T-cell epitope, the sequence of which corresponded to amino acid residue 434–448. The ISA/CpG formulation generated anti-D2 IgG titer comparable to those obtained from Freund’s adjuvant formulation, but generated fewer antibodies against D1 or TM peptides. The highly immunogenic D2 peptide contains both neutralizing and Th cell epitopes. These results suggest that synthetic peptide D2 would be useful as a component of SARS vaccine candidates.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          SYFPEITHI: database for MHC ligands and peptide motifs.

          The first version of the major histocompatibility complex (MHC) databank SYFPEITHI: database for MHC ligands and peptide motifs, is now available to the general public. It contains a collection of MHC class I and class II ligands and peptide motifs of humans and other species, such as apes, cattle, chicken, and mouse, for example, and is continuously updated. All motifs currently available are accessible as individual entries. Searches for MHC alleles, MHC motifs, natural ligands, T-cell epitopes, source proteins/organisms and references are possible. Hyperlinks to the EMBL and PubMed databases are included. In addition, ligand predictions are available for a number of MHC allelic products. The database content is restricted to published data only.
            • Record: found
            • Abstract: found
            • Article: found

            Severe acute respiratory syndrome (SARS): a year in review.

            Severe acute respiratory syndrome (SARS) emerged from China as an untreatable and rapidly spreading respiratory illness of unknown etiology. Following point source exposure in February 2003, more than a dozen guests infected at a Hong Kong hotel seeded multi-country outbreaks that persisted through the spring of 2003. The World Health Organization responded by invoking traditional public health measures and advanced technologies to control the illness and contain the cause. A novel coronavirus was implicated and its entire genome was sequenced by mid-April 2003. The urgency of responding to this threat focused scientific endeavor and stimulated global collaboration. Through real-time application of accumulating knowledge, the world proved capable of arresting the first pandemic threat of the twenty-first century, despite early respiratory-borne spread and global susceptibility. This review synthesizes lessons learned from this remarkable achievement. These lessons can be applied to re-emergence of SARS or to the next pandemic threat to arise.
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein.

              Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.

                Author and article information

                Biochem Biophys Res Commun
                Biochem. Biophys. Res. Commun
                Biochemical and Biophysical Research Communications
                7 May 2007
                6 July 2007
                7 May 2007
                : 358
                : 3
                : 716-721
                [a ]Vaccine Research and Development Center, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, ROC
                [b ]AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
                Author notes
                [* ]Corresponding author. Fax: +886 3 758 3009. levent@ 123456nhri.org.tw
                Copyright © 2007 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                : 19 April 2007

                sars cov,epitopes,vaccine,spike protein,pseudovirus,peptide
                sars cov, epitopes, vaccine, spike protein, pseudovirus, peptide


                Comment on this article