12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A ‘red line’ was established, identifying an area requiring for ecological protection in Tianjin, China. Within the protected area of the red line area, the Qilihai wetland is an important ecotope with complex ecological functions, although the ecosystem is seriously disturbed due to anthropogenic activities in the surrounding areas. This study assesses the water quality status of the Qilihai wetlands to identify the pollution sources and potential improvements based on the ecological red line policy, to improve and protect the waters of the Qilihai wetlands. An indicator system was established to assess water quality status using single factor evaluation and a comprehensive evaluation method, supported by data from 2010 to 2013. Assessment results show that not all indicators met the requirement of the Environmental Quality Standards for Surface Water (GB3838-2002) and that overall, waters in the Qilihai wetland were seriously polluted. Based on these findings we propose restrictions on all polluting anthropogenic activities in the red line area and implementation of restoration projects to improve water quality.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment.

          The Millennium Ecosystem Assessment (MA) introduced a new framework for analyzing social-ecological systems that has had wide influence in the policy and scientific communities. Studies after the MA are taking up new challenges in the basic science needed to assess, project, and manage flows of ecosystem services and effects on human well-being. Yet, our ability to draw general conclusions remains limited by focus on discipline-bound sectors of the full social-ecological system. At the same time, some polices and practices intended to improve ecosystem services and human well-being are based on untested assumptions and sparse information. The people who are affected and those who provide resources are increasingly asking for evidence that interventions improve ecosystem services and human well-being. New research is needed that considers the full ensemble of processes and feedbacks, for a range of biophysical and social systems, to better understand and manage the dynamics of the relationship between humans and the ecosystems on which they rely. Such research will expand the capacity to address fundamental questions about complex social-ecological systems while evaluating assumptions of policies and practices intended to advance human well-being through improved ecosystem services.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress in wetland restoration ecology.

            It takes more than water to restore a wetland. Now, scientists are documenting how landscape setting, habitat type, hydrological regime, soil properties, topography, nutrient supplies, disturbance regimes, invasive species, seed banks and declining biodiversity can constrain the restoration process. Although many outcomes can be explained post hoc, we have little ability to predict the path that sites will follow when restored in alternative ways, and no insurance that specific targets will be met. To become predictive, bolder approaches are now being developed, which rely more on field experimentation at multiple spatial and temporal scales, and in many restoration contexts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey).

              Landfills are the most common method for the disposal of municipal solid waste (MSW) in Turkey. However, determining the location of landfill sites is a difficult and complex process because it must combine social, environmental and technical parameters. Additionally, it depends on several criteria and regulations. The main objective of this study was to select of a landfill site for the Lake Beyşehir catchment area. The Beyşehir Lake is the largest freshwater lake and drinking water reservoir in Turkey, but there is no controlled landfill site in the region. Therefore, the landfill site should be determined such that the lake is protected. To determine the most suitable landfill site, an analytical hierarchy process (AHP) was combined with a geographic information system (GIS) to examine several criteria, such as geology/hydrogeology, land use, slope, height, aspect and distance from settlements, surface waters, roads, and protected areas (ecologic, scientific or historic). Each criterion was evaluated with the aid of AHP and mapped by GIS. Data were assorted into four suitability classes within the study area, i.e., high, moderate, low and very low suitability areas, which represented 3.24%, 7.55%, 12.70% and 2.81%, of the study area, respectively. Additionally, 73.70% was determined to be completely unsuitable for a landfill site. As a result, two candidate landfill sites are suggested and discussed. The final decision for landfill site selection will require more detailed field studies.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                02 August 2017
                August 2017
                : 14
                : 8
                : 870
                Affiliations
                College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; zhangyn2011@ 123456whu.edu.cn (Y.Z.); helenbooster@ 123456163.com (L.L.); xushengguo@ 123456mail.nankai.edu.cn (S.X.); ruan_nku@ 123456163.com (X.R.); jumeit@ 123456nankai.edu.cn (M.J.)
                Author notes
                [* ]Correspondence: chucl@ 123456nankai.edu.cn ; Tel.: +86-138-2138-5387; Fax: +86-222-350-6446
                Article
                ijerph-14-00870
                10.3390/ijerph14080870
                5580574
                28767096
                b23c76b7-e78d-4934-9509-857ce266f7da
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 June 2017
                : 31 July 2017
                Categories
                Article

                Public health
                water quality assessment,qilihai wetland reserve,single factor evaluation,weighted average,water pollution,problems and suggestions

                Comments

                Comment on this article