9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular gated nanoporous anodic alumina for the detection of cocaine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement “molecular gates” for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10 −7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery.

          Mesoporous silica nanoparticles (MSNPs) are one of the most promising inorganic drug delivery systems (DDSs). The design and development of tumour-targeted MSNPs with stimuli-responsive drug release capability aim at enhancing the efficiency and minimising the side effects of anti-tumour drugs for cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate.

            This communication describes the design of a novel and general bioresponsive controlled-release mesoporous silica (MS) nanoparticles system based on aptamer-target interactions. In this system, the pores of MS were capped with Au nanoparticles modified with aptamer (ATP aptamer in this case). By a competitive displacement reaction, the Au nanoparticles were uncapped in the presence of ATP molecule, and the cargo was released. Our results demonstrated that the aptamer-target interaction may be a promising route for the design of custom-made controlled-release nanodevices specifically governed by target biomolecules. Since aptamers have been obtained for a broad range of targets, including several cancer biomarkers, we believe that this aptamer-based controlled-release system should have an equally broad spectrum of applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor.

              The development of a biosensor system capable of continuous, real-time measurement of small-molecule analytes directly in complex, unprocessed aqueous samples has been a significant challenge, and successful implementation has been achieved for only a limited number of targets. Toward a general solution to this problem, we report here the Microfluidic Electrochemical Aptamer-based Sensor (MECAS) chip wherein we integrate target-specific DNA aptamers that fold, and thus generate an electrochemical signal, in response to the analyte with a microfluidic detection system. As a model, we demonstrate the continuous, real-time (approximately 1 min time resolution) detection of the small-molecule drug cocaine at near physiological, low micromolar concentrations directly in undiluted, otherwise unmodified blood serum. We believe our approach of integrating folding-based electrochemical sensors with miniaturized detection systems may lay the groundwork for the real-time, point-of-care detection of a wide variety of molecular targets.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                07 December 2016
                2016
                : 6
                : 38649
                Affiliations
                [1 ]Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n , 46022, Valencia, Spain
                [2 ]CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
                [3 ]Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26 , 43007, Tarragona, Spain
                Author notes
                Article
                srep38649
                10.1038/srep38649
                5141502
                27924950
                b2403018-17a3-4811-a925-ca54df76959d
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 09 August 2016
                : 10 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article