Blog
About

3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical and quantitative computed tomography predictors of response to endobronchial lung volume reduction therapy using coils

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Bronchoscopic lung volume reduction using coils (LVRC) is a well-known treatment option for severe emphysema. The purpose of this study was to identify quantitative computed tomography (QCT) and clinical parameters associated with positive treatment outcome.

          Patients and methods

          The CT scans, pulmonary function tests (PFT), and 6-minute walk test (6-MWT) data were collected from 72 patients with advanced emphysema prior to and at 3 months after LVRC treatment. The procedure involved placing 10 coils unilaterally. Various QCT parameters were derived using Apollo imaging software (VIDA). Independent predictors of clinically relevant outcome (Δ6-MWT ≥ 26 m, ΔFEV 1 ≥ 12%, ΔRV ≥ 10%) were identified through stepwise linear regression analysis.

          Results

          The response outcome for Δ6-MWT, for ΔFEV 1 and for ΔRV was met by 55%, 32% and 42%, respectively. For Δ6-MWT ≥ 26 m a lower baseline 6-MWT ( p = 0.0003) and a larger standard deviation (SD) of low attenuation cluster (LAC) sizes in peripheral regions of treated lung ( p = 0.0037) were significantly associated with positive outcome. For ΔFEV 1 ≥ 12%, lower baseline FEV 1 ( p = 0.02) and larger median LAC sizes in the central regions of treated lobe ( p = 0.0018) were significant predictors of good response. For ΔRV ≥ 10% a greater baseline TLC ( p = 0.0014) and a larger SD of LAC sizes in peripheral regions of treated lung ( p = 0.007) tended to respond better.

          Conclusion

          Patients with lower FEV 1 and 6-MWT, with higher TLC and specific QCT characteristics responded more positively to LVRC treatment, suggesting a more targeted CT-based approach to patient selection could lead to greater efficacy in treatment response.

          Related collections

          Most cited references 30

          • Record: found
          • Abstract: found
          • Article: not found

          A randomized study of endobronchial valves for advanced emphysema.

          Endobronchial valves that allow air to escape from a pulmonary lobe but not enter it can induce a reduction in lobar volume that may thereby improve lung function and exercise tolerance in patients with pulmonary hyperinflation related to advanced emphysema. We compared the safety and efficacy of endobronchial-valve therapy in patients with heterogeneous emphysema versus standard medical care. Efficacy end points were percent changes in the forced expiratory volume in 1 second (FEV1) and the 6-minute walk test on intention-to-treat analysis. We assessed safety on the basis of the rate of a composite of six major complications. Of 321 enrolled patients, 220 were randomly assigned to receive endobronchial valves (EBV group) and 101 to receive standard medical care (control group). At 6 months, there was an increase of 4.3% in the FEV1 in the EBV group (an increase of 1.0 percentage point in the percent of the predicted value), as compared with a decrease of 2.5% in the control group (a decrease of 0.9 percentage point in the percent of the predicted value). Thus, there was a mean between-group difference of 6.8% in the FEV1 (P=0.005). Roughly similar between-group differences were observed for the 6-minute walk test. At 12 months, the rate of the complications composite was 10.3% in the EBV group versus 4.6% in the control group (P=0.17). At 90 days, in the EBV group, as compared with the control group, there were increased rates of exacerbation of chronic obstructive pulmonary disease (COPD) requiring hospitalization (7.9% vs. 1.1%, P=0.03) and hemoptysis (6.1% vs. 0%, P=0.01). The rate of pneumonia in the target lobe in the EBV group was 4.2% at 12 months. Greater radiographic evidence of emphysema heterogeneity and fissure completeness was associated with an enhanced response to treatment. Endobronchial-valve treatment for advanced heterogeneous emphysema induced modest improvements in lung function, exercise tolerance, and symptoms at the cost of more frequent exacerbations of COPD, pneumonia, and hemoptysis after implantation. (Funded by Pulmonx; ClinicalTrials.gov number, NCT00129584.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The minimal important difference of exercise tests in severe COPD.

             Milo A. Puhan,  Robert Wise,   (2011)
            Our aim was to determine the minimal important difference (MID) for 6-min walk distance (6MWD) and maximal cycle exercise capacity (MCEC) in patients with severe chronic obstructive pulmonary disease (COPD). 1,218 patients enrolled in the National Emphysema Treatment Trial completed exercise tests before and after 4-6 weeks of pre-trial rehabilitation, and 6 months after randomisation to surgery or medical care. The St George's Respiratory Questionnaire (domain and total scores) and University of California San Diego Shortness of Breath Questionnaire (total score) served as anchors for anchor-based MID estimates. In order to calculate distribution-based estimates, we used the standard error of measurement, Cohen's effect size and the empirical rule effect size. Anchor-based estimates for the 6MWD were 18.9 m (95% CI 18.1-20.1 m), 24.2 m (95% CI 23.4-25.4 m), 24.6 m (95% CI 23.4-25.7 m) and 26.4 m (95% CI 25.4-27.4 m), which were similar to distribution-based MID estimates of 25.7, 26.8 and 30.6 m. For MCEC, anchor-based estimates for the MID were 2.2 W (95% CI 2.0-2.4 W), 3.2 W (95% CI 3.0-3.4 W), 3.2 W (95% CI 3.0-3.4 W) and 3.3 W (95% CI 3.0-3.5 W), while distribution-based estimates were 5.3 and 5.5 W. We suggest a MID of 26 ± 2 m for 6MWD and 4 ± 1 W for MCEC for patients with severe COPD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endobronchial Valves for Emphysema without Interlobar Collateral Ventilation.

              Bronchoscopic lung-volume reduction with the use of one-way endobronchial valves is a potential treatment for patients with severe emphysema. To date, the benefits have been modest but have been hypothesized to be much larger in patients without interlobar collateral ventilation than in those with collateral ventilation.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                20 July 2018
                : 13
                : 2215-2223
                Affiliations
                [1 ]Department of Pulmonology and Respiratory Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany, kkontogianni@ 123456gmail.com
                [2 ]Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany, kkontogianni@ 123456gmail.com
                [3 ]VIDA Diagnostics, Coralville, IA, USA
                [4 ]Diagnostic and Interventional Radiology with Nuclear Medicine, Chest Clinic (Thoraxklinik), University of Heidelberg, Heidelberg, Germany
                Author notes
                Correspondence: Konstantina Kontogianni, Department of Pulmonology and Respiratory Care Medicine, Thoraxklinik at the University of Heidelberg, Roentgenstrasse 1, 69126 Heidelberg, Germany, Tel +49 6221 396 8097, Email kkontogianni@ 123456gmail.com
                Article
                copd-13-2215
                10.2147/COPD.S159355
                6055902
                © 2018 Kontogianni et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article