134
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Laser absorption via QED cascades in counter propagating laser pulses

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes (\(\sim\) 10 PW) where the laser absorption is negligible, to extreme intensities (> 100 PW) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Extremely high-intensity laser interactions with fundamental quantum systems

              The field of laser-matter interaction traditionally deals with the response of atoms, molecules and plasmas to an external light wave. However, the recent sustained technological progress is opening up the possibility of employing intense laser radiation to trigger or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding \(10^{22}\;\text{W/cm\)^2\(}\) can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum, and can trigger the creation of particles like electrons, muons and pions and their corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and may even allow for potential discovery of new particles beyond the Standard Model. These are the main topics of the present article, which is devoted to a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, nuclear and particle physics, occurring in extremely intense laser fields.
                Bookmark

                Author and article information

                Journal
                1512.05174

                Plasma physics
                Plasma physics

                Comments

                Comment on this article