0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Eastern Palaearctic Cosmopterix feminella Sinev, 1988, introduced in Italy: taxonomy, biology and a new synonymy (Lepidoptera, Cosmopterigidae)

      , , , ,

      Nota Lepidopterologica

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cosmopterix feminella Sinev, 1988, previously known from the East Palearctic, Primorskiy Territory in Russia and Japan has been collected at light in Europe. In northern Italy 58 females were collected in two localities in the province Asti, two in Alessandria, three in Udine, and in one locality in Pordenone. Cosmopterix feminella is most likely parthenogenetic as only females are known. The caterpillars are leafminers on grasses. The species is redescribed and illustrated. DNA barcodes are provided and compared with other European species. Cosmopterix feminae Kuroko, 2015 is synonymised with C. feminella. The species was probably accidentally introduced into Italy.

          Related collections

          Most cited references 9

          • Record: found
          • Abstract: found
          • Article: not found

          DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-α: two are better than one in recognising cryptic species

          We sequenced 665bp of the Cytochrome C Oxidase I (COI) barcoding marker for 257 specimens and 482bp of Elongation Factor 1-α (EF1-α) for 237 specimens belonging to the leafmining subgenus Ectoedemia ( Ectoedemia ) in the basal Lepidopteran family Nepticulidae. The dataset includes 45 out of 48 West Palearctic Ectoedemia s. str. species and several species from Africa, North America and Asia. Both COI and EF1-α proved reliable as an alternative to conventional species identification for the majority of species and the combination of both markers can aid in species validation. A clear barcode gap is not present, and in some species large K2P intraspecific pairwise differences are found, up to 6.85% in COI and 2.9% in EF1-α. In the Ectoedemia rubivora species complex, the species E. rubivora, E. arcuatella and E. atricollis share COI barcodes and could only be distinguished by EF1-α. Diagnostic base positions, usually third codon positions, are in this and other cases a useful addition to species delimitation, in addition to distance methods. Ectoedemia albifasciella COI barcodes fall into two distinct clusters not related to other characters, whereas these clusters are absent in EF1-α, possibly caused by mtDNA anomalies or hybridisation. In the Ectoedemia subbimaculella complex, both sequences fail to unequivocally distinguish the species E. heringi, E. liechtensteini, E. phyllotomella and one population of E. subbimaculella . DNA barcodes confirm that North American Ectoedemia argyropeza are derived from a European introduction. We strongly advocate the use of a nuclear marker in addition to the universal COI barcode marker for better identifying species, including cryptic ones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Lepidoptera. Chapter 11

            We provide a comprehensive overview of those Lepidopteran invasions to Europe that result from increasing globalisation and also review expansion of species within Europe. A total of 97 non-native Lepidoptera species (about 1% of the known fauna), in 20 families and 11 superfamilies have established so far in Europe, of which 30 alone are Pyraloidea. In addition, 88 European species in 25 families have expanded their range within Europe and around 23% of these are of Mediterranean or Balkan origin, invading the north and west. Although a number of these alien species have been in Europe for hundreds of years, 74% have established during the 20th century and arrivals are accelerating, with an average of 1.9 alien Lepidoptera newly established per year between 2000–2007. For 78 aliens with a known area of origin, Asia has contributed 28.9%, Africa (including Macaronesian islands, Canaries, Madeira and Azores) 21.6%, North America 16.5%, Australasia 7.2% and the neotropics just 5.2%. The route for almost all aliens to Europe is via importation of plants or plant products. Most alien Lepidoptera established in Europe are also confined to man-made habitats, with 52.5% occuring in parks and gardens. We highlight four species in particular, Diaphania perspectalis, Cacyreus marshalli, Cameraria ohridella and Paysandisia archon, as the most important current economic threats.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antispila oinophylla new species (Lepidoptera, Heliozelidae), a new North American grapevine leafminer invading Italian vineyards: taxonomy, DNA barcodes and life cycle

              Abstract A grapevine leafminer Antispila oinophylla van Nieukerken & Wagner, sp. n., is described both from eastern North America (type locality: Georgia) and as a new important invader in North Italian vineyards (Trentino and Veneto Region) since 2006. The species is closely related to, and previously confused with Antispila ampelopsifoliella Chambers, 1874, a species feeding on Virginia creeper Parthenocissus quinquefolia (L.) Planchon., and both are placed in an informal Antispila ampelopsifoliella group. Wing pattern, genitalia, and DNA barcode data all confirm the conspecificity of native North American populations and Italian populations. COI barcodes differ by only 0–1.23%, indicating that the Italian populations are recently established from eastern North America. The new species feeds on various wild Vitis species in North America, on cultivated Vitis vinifera L. in Italy, and also on Parthenocissus quinquefolia in Italy. North American Antispila feeding on Parthenocissus include at least two other species, one of which is Antispila ampelopsifoliella . Morphology and biology of the new species are contrasted with those of North American Antispila Hübner, 1825 species and European Holocacista rivillei (Stainton, 1855). The source population of the introduction is unknown, but cases with larvae or pupae, attached to imported plants, are a likely possibility. DNA barcodes of the three European grapevine leafminers and those of all examined Heliozelidae are highly diagnostic. North American Vitaceae-feeding Antispila form two species complexes and include several as yet unnamed taxa. The identity of three out of the four previously described North American Vitaceae-feeding species cannot be unequivocally determined without further revision, but these are held to be different from Antispila oinophylla . In Italy the biology of Antispila oinophylla was studied in a vineyard in the Trento Province (Trentino-Alto Adige Region) in 2008 and 2009. Mature larvae overwinter inside their cases, fixed to vine trunks or training stakes. The first generation flies in June. An additional generation occurs from mid-August onwards. The impact of the pest in this vineyard was significant with more than 90% of leaves infested in mid-summer. Since the initial discovery in 2006, the pest spread to several additional Italian provinces, in 2010 the incidence of infestation was locally high in commercial vineyards. Preliminary phylogenetic analyses suggest that Antispila is paraphyletic, and that the Antispila ampelopsifoliella group is related to Coptodisca Walsingham, 1895, Holocacista Walsingham & Durrant, 1909 and Antispilina Hering, 1941, all of which possess reduced wing venation. Vitaceae may be the ancestral hostplant family for modern Heliozelidae.
                Bookmark

                Author and article information

                Journal
                Nota Lepidopterologica
                NL
                Pensoft Publishers
                2367-5365
                0342-7536
                May 30 2019
                May 30 2019
                : 42
                : 1
                : 49-61
                Article
                10.3897/nl.42.33962
                © 2019

                Comments

                Comment on this article