48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GPR30, the Non-Classical Membrane G Protein Related Estrogen Receptor, Is Overexpressed in Human Seminoma and Promotes Seminoma Cell Proliferation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation.

          Results

          We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation.

          Conclusion

          These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption.

          A wide variety of environmental contaminants have been shown to exert estrogenic actions in wildlife and laboratory animals through binding to nuclear estrogen receptors (ERs) and subsequent transcription of estrogen responsive genes. We show here that several of these environmental estrogens also bind to the novel seven-transmembrane estrogen receptor, GPR30, to activate alternative estrogen signaling pathways in an ER-negative cell line (HEK293) stably transfected with the receptor. Genestein was the most effective competitor for the receptor (IC(50) 133 nM), with a relative binding affinity (RBA) 13% that of estradiol-17beta (E2). Bisphenol A, zearalonone, and nonylphenol also had relatively high binding affinities for GPR30 with RBAs of 2-3%. Kepone, p,p'-DDT, 2,2',5',-PCB-4-OH and o,p'-DDE had lower affinities with RBAs of 0.25-1.3%, whereas o,p'-DDT, p,p'-DDE, methoxychlor and atrazine caused less than 50% displacement of [(3)H]-E2 at concentrations up to 10 microM. Overall, the binding affinities of these compounds for GPR30 are broadly similar to their affinities to the ERs. Environmental estrogens with relatively high binding affinities for GPR30 (genestein, bisphenol A, nonylphenol and Kepone) also displayed estrogen agonist activities in an in vitro assay of membrane-bound adenylyl cyclase activity, a GPR30-dependent signaling pathway activated by estrogens. The results indicate that nontraditional estrogen actions mediated through GPR30 are potentially susceptible to disruption by a variety of environmental estrogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo Effects of a GPR30 Antagonist

            Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30/GPER, in addition to classical nuclear estrogen receptors (ERα/β), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized a selective agonist of GPR30, G-1 (1). To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of a G-1 analog, G15 (2) that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 reveals that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells.

              Estrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein-coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17beta-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor alpha (ERalpha) also contributes to GPR30/EGFR signaling is less understood. Here, we show that, in ERalpha-positive BG-1 ovarian cancer cells, both E2 and the GPR30-selective ligand G-1 induced c-fos expression and estrogen-responsive element (ERE)-independent activity of a c-fos reporter gene, whereas only E2 stimulated an ERE-responsive reporter gene, indicating that GPR30 signaling does not activate ERalpha-mediated transcription. Similarly, both ligands up-regulated cyclin D1, cyclin E, and cyclin A, whereas only E2 enhanced progesterone receptor expression. Moreover, both GPR30 and ERalpha expression are required for c-fos stimulation and extracellular signal-regulated kinase (ERK) activation in response to either E2 or G-1. Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERalpha expression. Interestingly, we show that both GPR30 and ERalpha expression along with active EGFR signaling are required for E2-stimulated and G-1-stimulated proliferation of ovarian cancer cells. Because G-1 was able to induce both c-fos expression and proliferation in the ERalpha-negative/GPR30-positive SKBR3 breast cancer cells, the requirement for ERalpha expression in GPR30/EGFR signaling may depend on the specific cellular context of different tumor types.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                4 April 2012
                : 7
                : 4
                : e34672
                Affiliations
                [1 ]Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 « Environnement, Reproduction et Cancers Hormono-Dépendants », Nice, France
                [2 ]Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France
                [3 ]Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Nice, France
                [4 ]Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Laboratoire d'Anatomie et Cytologie Pathologiques, Nice, France
                [5 ]Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Service d'Urologie, Nice, France
                II Università di Napoli, Italy
                Author notes

                Conceived and designed the experiments: PF NC. Performed the experiments: NC AV AB BS. Analyzed the data: PF NC. Contributed reagents/materials/analysis tools: JFM DC. Wrote the paper: PF NC.

                Article
                PONE-D-11-21285
                10.1371/journal.pone.0034672
                3319601
                22496838
                b2670bda-f005-49b4-8591-2e21390fb00b
                Chevalier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 October 2011
                : 5 March 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Intracellular Receptors
                Molecular Cell Biology
                Signal Transduction
                Signaling in Cellular Processes
                G-Protein Signaling
                Toxicology
                Toxic Agents
                Medicine
                Oncology
                Cancers and Neoplasms
                Gynecological Tumors
                Germ Cell Cancer
                Toxicology
                Toxic Agents
                Urology
                Testicular Cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article