+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo.


      Animals, Base Sequence, Benzhydryl Compounds, Binding Sites, Cell Line, Environmental Pollutants, Estradiol, pharmacology, Estrogens, Female, Gene Expression, drug effects, Hyperprolactinemia, chemically induced, Phenols, Pituitary Gland, Anterior, secretion, Pituitary Gland, Posterior, Prolactin, genetics, Rats, Rats, Inbred F344, Receptors, Estrogen, Transfection

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Environmental estrogens (xenoestrogens) are a diverse group of chemicals that mimic estrogenic actions. Bisphenol A (BPA), a monomer of plastics used in many consumer products, has estrogenic activity in vitro. The pituitary lactotroph is a well established estrogen-responsive cell. The overall objective was to examine the effects of BPA on PRL release and explore its mechanism of action. The specific aims were to: 1) compare the potency of estradiol and BPA in stimulating PRL gene expression and release in vitro; 2) determine whether BPA increases PRL release in vivo; 3) examine if the in vivo estrogenic effects are mediated by PRL regulating factor from the posterior pituitary; and 4) examine if BPA regulates transcription through the estrogen response element (ERE). BPA increased PRL gene expression, release, and cell proliferation in anterior pituitary cells albeit at a 1000- to 5000-fold lower potency than estradiol. On the other hand, BPA had similar efficacy to estradiol in inducing hyperprolactinemia in estrogen-sensitive Fischer 344 (F344) rats; Sprague Dawley (SD) rats did not respond to BPA. Posterior pituitary cells from estradiol- or BPA-treated F344 rats strongly increased PRL gene expression upon coculture with GH3 cells stably transfected with a reporter gene. Similar to estradiol, BPA induced ERE activation in transiently transfected anterior and posterior pituitary cells. We conclude that: a) BPA mimics estradiol in inducing hyperprolactinemia in genetically predisposed rats; b) the in vivo action of estradiol and BPA in F344 rats is mediated, at least in part, by increasing PRL regulating factor activity in the posterior pituitary; c) BPA appears to regulate transcription through an ERE, suggesting that it binds to estrogen receptors in both the anterior and posterior pituitaries. The possibility that BPA and other xenoestrogens have adverse effects on the neuroendocrine axis in susceptible human subpopulations is discussed.

          Related collections

          Author and article information



          Comment on this article