6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-term nitrate removal through methane-dependent denitrification microorganisms in sequencing batch reactors fed with only nitrate and methane

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Denitrifying anaerobic methane oxidation (damo) bioprocesses can remove nitrate using methane as the electron donor, which gains great concern due to the current stringent discharge standard of nitrogen in wastewater treatment plants. To obtain an engineering acceptable nitrogen removal rate (NRR) and demonstrate the long-term stable ability of damo system under conditions of nitrate and methane, two sequencing batch reactors (SBRs) fed with only nitrate and methane were operated for more than 600 days at 30 °C. The NRR of 21.91 ± 0.73 mg NO 3 -N L −1 day −1 was obtained which is, to the best of our knowledge, the highest rate observed in the literatures under such conditions. The temperature was found to significantly affect the system performance. Furthermore, the microbial community was analyzed by using real-time PCR technique. The results showed that the microbial consortium contained damo archaea and bacteria. These two microbes cooperated to maintain the long-term stability. And the number of damo archaea was higher than that of damo bacteria with the ratio of 1.77. By using methane as the electron donor, damo archaea reduced nitrate to nitrite coupled to methane oxidation and damo bacteria reduce the generated nitrite to nitrogen gas. The first step of nitrate to nitrite taken by damo archaea might be the limiting step of this cooperation system. SBR could be a suitable reactor configuration to enrich slow-growing microbes like damo culture. These results demonstrated the potential application of damo processes for nitrogen removal of wastewater containing low C/N ratios.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Archaea in coastal marine environments.

          E Delong (1992)
          Archaea (archaebacteria) are a phenotypically diverse group of microorganisms that share a common evolutionary history. There are four general phenotypic groups of archaea: the methanogens, the extreme halophiles, the sulfate-reducing archaea, and the extreme thermophiles. In the marine environment, archaeal habitats are generally limited to shallow or deep-sea anaerobic sediments (free-living and endosymbiotic methanogens), hot springs or deep-sea hydrothermal vents (methanogens, sulfate reducers, and extreme thermophiles), and highly saline land-locked seas (halophiles). This report provides evidence for the widespread occurrence of unusual archaea in oxygenated coastal surface waters of North America. Quantitative estimates indicated that up to 2% of the total ribosomal RNA extracted from coastal bacterioplankton assemblages was archaeal. Archaeal small-subunit ribosomal RNA-encoding DNAs (rDNAs) were cloned from mixed bacterioplankton populations collected at geographically distant sampling sites. Phylogenetic and nucleotide signature analyses of these cloned rDNAs revealed the presence of two lineages of archaea, each sharing the diagnostic signatures and structural features previously established for the domain Archaea. Both of these lineages were found in bacterioplankton populations collected off the east and west coasts of North America. The abundance and distribution of these archaea in oxic coastal surface waters suggests that these microorganisms represent undescribed physiological types of archaea, which reside and compete with aerobic, mesophilic eubacteria in marine coastal environments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.

            Anaerobic oxidation of methane (AOM) is critical for controlling the flux of methane from anoxic environments. AOM coupled to iron, manganese and sulphate reduction have been demonstrated in consortia containing anaerobic methanotrophic (ANME) archaea. More recently it has been shown that the bacterium Candidatus 'Methylomirabilis oxyfera' can couple AOM to nitrite reduction through an intra-aerobic methane oxidation pathway. Bioreactors capable of AOM coupled to denitrification have resulted in the enrichment of 'M. oxyfera' and a novel ANME lineage, ANME-2d. However, as 'M. oxyfera' can independently couple AOM to denitrification, the role of ANME-2d in the process is unresolved. Here, a bioreactor fed with nitrate, ammonium and methane was dominated by a single ANME-2d population performing nitrate-driven AOM. Metagenomic, single-cell genomic and metatranscriptomic analyses combined with bioreactor performance and (13)C- and (15)N-labelling experiments show that ANME-2d is capable of independent AOM through reverse methanogenesis using nitrate as the terminal electron acceptor. Comparative analyses reveal that the genes for nitrate reduction were transferred laterally from a bacterial donor, suggesting selection for this novel process within ANME-2d. Nitrite produced by ANME-2d is reduced to dinitrogen gas through a syntrophic relationship with an anaerobic ammonium-oxidizing bacterium, effectively outcompeting 'M. oxyfera' in the system. We propose the name Candidatus 'Methanoperedens nitroreducens' for the ANME-2d population and the family Candidatus 'Methanoperedenaceae' for the ANME-2d lineage. We predict that 'M. nitroreducens' and other members of the 'Methanoperedenaceae' have an important role in linking the global carbon and nitrogen cycles in anoxic environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A microbial consortium couples anaerobic methane oxidation to denitrification.

              Modern agriculture has accelerated biological methane and nitrogen cycling on a global scale. Freshwater sediments often receive increased downward fluxes of nitrate from agricultural runoff and upward fluxes of methane generated by anaerobic decomposition. In theory, prokaryotes should be capable of using nitrate to oxidize methane anaerobically, but such organisms have neither been observed in nature nor isolated in the laboratory. Microbial oxidation of methane is thus believed to proceed only with oxygen or sulphate. Here we show that the direct, anaerobic oxidation of methane coupled to denitrification of nitrate is possible. A microbial consortium, enriched from anoxic sediments, oxidized methane to carbon dioxide coupled to denitrification in the complete absence of oxygen. This consortium consisted of two microorganisms, a bacterium representing a phylum without any cultured species and an archaeon distantly related to marine methanotrophic Archaea. The detection of relatives of these prokaryotes in different freshwater ecosystems worldwide indicates that the reaction presented here may make a substantial contribution to biological methane and nitrogen cycles.
                Bookmark

                Author and article information

                Contributors
                lww@cqu.edu.cn
                +86 023 13896095400 , lupl@cqu.edu.cn
                2606505035@qq.com
                lilanzhang@cqu.edu.cn
                hanxinkuan0217@163.com
                dzhang@cqu.edu.cn
                Journal
                AMB Express
                AMB Express
                AMB Express
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2191-0855
                30 June 2018
                30 June 2018
                2018
                : 8
                : 108
                Affiliations
                [1 ]ISNI 0000 0001 0154 0904, GRID grid.190737.b, State Key Laboratory of Coal Mine Disaster Dynamics and Control, , Chongqing University, ; Chongqing, 400044 People’s Republic of China
                [2 ]ISNI 0000 0001 0154 0904, GRID grid.190737.b, Department of Environmental Science, , Chongqing University, ; Chongqing, 400044 People’s Republic of China
                Article
                637
                10.1186/s13568-018-0637-9
                6026486
                29961200
                b273b634-e669-47a5-944b-05da3eca55d8
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 17 April 2018
                : 25 June 2018
                Funding
                Funded by: the Central Universities,Special Research Projects of Science and Technology
                Award ID: CDJZR13245501
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © The Author(s) 2018

                Biotechnology
                methane-dependent denitrification,anaerobic methane-oxidation,damo archaea,nitrate removal,sbr

                Comments

                Comment on this article