4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transfer design between neighborhoods of planetary moons in the circular restricted three-body problem

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Given the interest in future space missions devoted to the exploration of key moons in the solar system and that may involve libration point orbits, an efficient design strategy for transfers between moons is introduced that leverages the dynamics in these multi-body systems. The moon-to-moon analytical transfer (MMAT) method is introduced, comprised of a general methodology for transfer design between the vicinities of the moons in any given system within the context of the circular restricted three-body problem, useful regardless of the orbital planes in which the moons reside. A simplified model enables analytical constraints to efficiently determine the feasibility of a transfer between two different moons moving in the vicinity of a common planet. In particular, connections between the periodic orbits of such two different moons are achieved. The strategy is applicable for any type of direct transfers that satisfy the analytical constraints. Case studies are presented for the Jovian and Uranian systems. The transition of the transfers into higher-fidelity ephemeris models confirms the validity of the MMAT method as a fast tool to provide possible transfer options between two consecutive moons.

          Related collections

          Author and article information

          Journal
          07 October 2021
          Article
          10.1007/s10569-021-10031-x
          2110.03683
          b27cb9dd-b75d-4745-a327-ebbd05a52d2f

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Celestial Mechanics & Dynamical Astronomy 133, 36 (2021)
          astro-ph.EP

          Planetary astrophysics
          Planetary astrophysics

          Comments

          Comment on this article