51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Spin/Ssty repeat: a new motif identified in proteins involved in vertebrate development from gamete to embryo

      research-article
      1 , , 1 , 1
      Genome Biology
      BioMed Central

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spin/Ssty genes might be important in the transition from sperm cells and oocytes to the early embryo. The discovery of a new protein motif of around 50 amino acids in length, the Spin/Ssty repeat is reported. Each repeat resides in its own exon, supporting the view that Spin/Ssty repeats are independent functional units.

          Abstract

          Background

          The homologous genes Spin ( spindlin) and Ssty were first identified as genes involved in gametogenesis and seem to occur in multiple copies in vertebrate genomes. The mouse spindlin (Spin) protein was reported to interact with the spindle apparatus during oogenesis and to be a target for cell-cycle-dependent phosphorylation. The transcript of the mouse Ssty gene is specific to sperm cells. In the chicken, spindlin was found to co-localize with SUMO-1 to nuclear dots during interphase in fibroblasts, but to co-localize with chromosomes during mitosis. Thus, Spin/Ssty genes might be important in the transition from sperm cells and oocytes to the early embryo, as well as in mitosis.

          Results

          Here we report the discovery of a new protein motif of around 50 amino acids in length, the Spin/Ssty repeat, in proteins of the Spin/Ssty (spindlin) family. We found that in one member of this family, the human SPIN gene, each repeat resides in its own exon, supporting our view that Spin/Ssty repeats are independent functional units. On the basis of different secondary-structure prediction methods, we propose a four-stranded β-structure for the Spin/Ssty repeat.

          Conclusions

          The discovery of the Spin/Ssty repeat might contribute to the further elucidation of the structure and function of spindlin-family proteins. We predict that the tertiary structure of spindlin-like proteins is composed of three modules of Spin/Ssty repeats.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Profile hidden Markov models.

          S. Eddy (1998)
          The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementations and two large libraries of profile HMMs of common protein domains are available. HMM methods performed comparably to threading methods in the CASP2 structure prediction exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties.

            FUGUE, a program for recognizing distant homologues by sequence-structure comparison (http://www-cryst.bioc.cam.ac.uk/fugue/), has three key features. (1) Improved environment-specific substitution tables. Substitutions of an amino acid in a protein structure are constrained by its local structural environment, which can be defined in terms of secondary structure, solvent accessibility, and hydrogen bonding status. The environment-specific substitution tables have been derived from structural alignments in the HOMSTRAD database (http://www-cryst.bioc. cam.ac.uk/homstrad/). (2) Automatic selection of alignment algorithm with detailed structure-dependent gap penalties. FUGUE uses the global-local algorithm to align a sequence-structure pair when they greatly differ in length and uses the global algorithm in other cases. The gap penalty at each position of the structure is determined according to its solvent accessibility, its position relative to the secondary structure elements (SSEs) and the conservation of the SSEs. (3) Combined information from both multiple sequences and multiple structures. FUGUE is designed to align multiple sequences against multiple structures to enrich the conservation/variation information. We demonstrate that the combination of these three key features implemented in FUGUE improves both homology recognition performance and alignment accuracy. Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis.

              Graphical dot-matrix plots can provide the most complete and detailed comparison of two sequences. Presented here is DOTTER2, a dot-plot program for X-windows which can compare DNA or protein sequences, and also DNA versus protein. The main novel feature of DOTTER is that the user can vary the stringency cutoffs interactively, so that the dot-matrix only needs to be calculated once. This is possible thanks to a 'Greyramp tool' that was developed to change the displayed stringency of the matrix by dynamically changing the greyscale rendering of the dots. The Greyramp tool allows the user to interactively change the lower and upper score limit for the greyscale rendering. This allows exploration of the separation between signal and noise, and fine-grained visualisation of different score levels in the dot-matrix. Other useful features are dot-matrix compression, mouse-controlled zooming, sequence alignment display and saving/loading of dot-matrices. Since the matrix only has to be calculated once and since the algorithm is fast and linear in space, DOTTER is practical to use even for sequences as long as cosmids. DOTTER was integrated in the gene-modelling module of the genomic database system ACEDB3. This was done via the homology viewer BLIXEM in a way that also allows segments from the BLAST suite of searching programs to be superimposed on top of the full dot-matrix. This feature can also be used for very quick finding of the strongest matches. As examples, we analyse a Caenorhabditis elegans cosmid with several tandem repeat families, and illustrate how DOTTER can improve gene modelling.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2002
                7 December 2001
                : 3
                : 1
                : research0003.1-research0003.6
                Affiliations
                [1 ]metaGen Pharmaceuticals GmbH, Oudenarderstrasse 16, D-13347 Berlin, Germany
                Article
                gb-2001-3-1-research0003
                150450
                11806826
                b29d5095-3dd6-4946-b312-33a3c424613e
                Copyright © 2001 Staub et al., licensee BioMed Central Ltd
                History
                : 19 September 2001
                : 10 October 2001
                : 23 October 2001
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article