33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Virus entry: molecular mechanisms and biomedical applications

      review-article
      Nature Reviews. Microbiology
      Nature Publishing Group UK

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Key Points

          • Virus entry into animal cells is initiated by attachment to receptors and is followed by important conformational changes of viral proteins, penetration through (non-enveloped viruses) or fusion with (enveloped viruses) cellular membranes. The process ends with transfer of viral genomes inside host cells.

          • Viral proteins mediating entry are very diverse, but many share common three-dimensional structural motifs.

          • Conformational changes in the viral proteins that drive entry are typically initiated by high-affinity interactions with receptors, or changes in pH after receptor binding and internalization. They include formation of coiled-coils in class I fusion proteins, dimer to trimer transitions in class II fusion proteins, movement of capsid proteins in non-enveloped viruses and exposure of membrane destabilizing sequences.

          • Fusion with, or penetration through, cell membranes might involve multimolecular protein complexes and requires structural rearrangements of membrane lipids.

          • Inhibitors of virus entry can prevent virus attachment, or bind to entry intermediates; small organic molecules, peptides, soluble receptors and antibodies are in clinical trials. Six virus-specific polyclonal human immunoglobulins, one monoclonal antibody and one peptide have been approved by the US Food and Drug Administration for clinical use.

          • Viral proteins involved in entry can induce immune responses and be used as vaccine immunogens.

          • Viral entry machineries could be beneficial for human physiology and retargeted for the treatment of cancer and other diseases.

          Abstract

          Viruses have evolved to enter cells from all three domains of life — Bacteria, Archaea and Eukaryotes. Of more than 3,600 known viruses, hundreds can infect human cells and most of those are associated with disease. To gain access to the cell interior, animal viruses attach to host-cell receptors. Advances in our understanding of how viral entry proteins interact with their host-cell receptors and undergo conformational changes that lead to entry offer unprecedented opportunities for the development of novel therapeutics and vaccines.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          A novel coronavirus associated with severe acute respiratory syndrome.

          A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

            Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progress and problems with the use of viral vectors for gene therapy.

              Gene therapy has a history of controversy. Encouraging results are starting to emerge from the clinic, but questions are still being asked about the safety of this new molecular medicine. With the development of a leukaemia-like syndrome in two of the small number of patients that have been cured of a disease by gene therapy, it is timely to contemplate how far this technology has come, and how far it still has to go.
                Bookmark

                Author and article information

                Contributors
                dimitrov@ncifcrf.gov
                Journal
                Nat Rev Microbiol
                Nat. Rev. Microbiol
                Nature Reviews. Microbiology
                Nature Publishing Group UK (London )
                1740-1526
                1740-1534
                2004
                : 2
                : 2
                : 109-122
                Affiliations
                GRID grid.48336.3a, ISNI 0000 0004 1936 8075, Human Immunovirology and Computational Biology Group, Laboratory of Experimental and Computational Biology, Centre for Cancer Research, Building 469, Room 246, Miller Drive, National Cancer Institute at Frederick, ; Frederick, 21702-1201 Maryland USA
                Article
                BFnrmicro817
                10.1038/nrmicro817
                7097642
                15043007
                b2a0a885-ee2c-4a71-a1b3-bfb21cf035c3
                © Nature Publishing Group 2004

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2004

                Comments

                Comment on this article