27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Expression Profiling in Winged and Wingless Cotton Aphids, Aphis gossypii (Hemiptera: Aphididae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While trade-offs between flight capability and reproduction is a common phenomenon in wing dimorphic insects, the molecular basis is largely unknown. In this study, we examined the transcriptomic differences between winged and wingless morphs of cotton aphids, Aphis gossypii, using a tag-based digital gene expression (DGE) approach. Ultra high-throughput Illumina sequencing generated 5.30 and 5.39 million raw tags, respectively, from winged and wingless A. gossypii DGE libraries. We identified 1,663 differentially expressed transcripts, among which 58 were highly expressed in the winged A. gossypii, whereas 1,605 expressed significantly higher in the wingless morphs. Bioinformatics tools, including Gene Ontology, Cluster of Orthologous Groups, euKaryotic Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes pathways, were used to functionally annotate these transcripts. In addition, 20 differentially expressed transcripts detected by DGE were validated by the quantitative real-time PCR. Comparative transcriptomic analysis of sedentary (wingless) and migratory (winged) A. gossyii not only advances our understanding of the trade-offs in wing dimorphic insects, but also provides a candidate molecular target for the genetic control of this agricultural insect pest.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms

          The hippocampal expression profiles of wild-type mice and mice transgenic for δC-doublecortin-like kinase were compared with Solexa/Illumina deep sequencing technology and five different microarray platforms. With Illumina's digital gene expression assay, we obtained ∼2.4 million sequence tags per sample, their abundance spanning four orders of magnitude. Results were highly reproducible, even across laboratories. With a dedicated Bayesian model, we found differential expression of 3179 transcripts with an estimated false-discovery rate of 8.5%. This is a much higher figure than found for microarrays. The overlap in differentially expressed transcripts found with deep sequencing and microarrays was most significant for Affymetrix. The changes in expression observed by deep sequencing were larger than observed by microarrays or quantitative PCR. Relevant processes such as calmodulin-dependent protein kinase activity and vesicle transport along microtubules were found affected by deep sequencing but not by microarrays. While undetectable by microarrays, antisense transcription was found for 51% of all genes and alternative polyadenylation for 47%. We conclude that deep sequencing provides a major advance in robustness, comparability and richness of expression profiling data and is expected to boost collaborative, comparative and integrative genomics studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiology and ecology of dispersal polymorphism in insects.

            Studies of dispersal polymorphism in insects have played a pivotal role in advancing our understanding of population dynamics, life history evolution, and the physiological basis of adaptation. Comparative data on wing-dimorphic insects provide the most definitive evidence to date that habitat persistence selects for reduced dispersal capability. The increased fecundity of flightless females documents that a fitness trade-off exists between flight capability and reproduction. However, only recently have studies of nutrient consumption and allocation provided unequivocal evidence that this fitness trade-off results from a trade-off of internal resources. Recent studies involving wing-dimorphic insects document that flight capability imposes reproductive penalties in males as well as females. Direct information on hormone titers and their regulation implicates juvenile hormone and ecdysone in the control of wing-morph determination. However, detailed information is available for only one species, and the physiological regulation of wing-morph production remains poorly understood. Establishing a link between the ecological factors that influence dispersal and the proximate physiological mechanisms regulating dispersal ability in the same taxon remains as a key challenge for future research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dispersal Polymorphisms in Insects

                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2014
                19 February 2014
                : 10
                : 3
                : 257-267
                Affiliations
                1. Department of Entomology, China Agricultural University, Beijing 100193, China.
                2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA.
                Author notes
                ✉ Corresponding author: Dr. Qingwen Zhang, Department of Entomology, China Agricultural University, Beijing, China, 100193. Phone: +86-10-6273-3016 Fax: +86-10-6273-3016 Email: zhangqingwen@ 123456263.net . Or Dr. Xuguo "Joe" Zhou, Department of Entomology, University of Kentucky, S-225 Agricultural Science Centre North, Lexington, KY, USA 40546-0091. Phone: +1- 859-257-3125 Fax: +1-859-323-1120 Email: xuguozhou@ 123456uky.edu .

                * These authors contributed equally to this research.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv10p0257
                10.7150/ijbs.7629
                3957081
                24644424
                b2a2fdf3-db7d-47f0-814d-9dbc7410f185
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 10 September 2013
                : 22 January 2014
                Categories
                Research Paper

                Life sciences
                aphis gossypii,trade-off,migration,digital gene expression,wing polyphenism.
                Life sciences
                aphis gossypii, trade-off, migration, digital gene expression, wing polyphenism.

                Comments

                Comment on this article