6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of C. lacerata on Insulin Resistance in Type 2 Diabetes Patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Several experimental studies have suggested beneficial effects of Ceriporia lacerata on glucose metabolism. However, there has been no human study assessing the effects of C. lacerata on glucose metabolism. Therefore, we investigated whether C. lacerata improves glucose control and insulin resistance in type 2 diabetes patients.

          Methods

          Ninety patients diagnosed with type 2 diabetes (T2DM) for more than 6 months were enrolled. Subjects were randomly divided into placebo ( n = 45) or C. lacerata ( n = 45) groups and then assigned to take placebo or C. lacerata capsules (500 mg/capsule) for a 12-week intervention period. Biochemical markers, including fasting glucose, 2-hour postprandial plasma glucose, and lipid profile levels, as well as insulin, c-peptide, and Hba1c, were measured. Furthermore, insulin sensitivity indices, such as HOMA-IR, HOMA-beta, and QUICKI, were assessed before and after the 12-week administration.

          Results

          Eighty-four patients completed the study. There were no significant differences in fasting, postprandial glucose, HbA1c, or lipid parameters. HOMA-IR and QUICKI indices were improved at week 12 in the C. lacerata group, especially in subjects with HOMA-IR of 1.8 or more ( p < 0.05). Fasting, postprandial c-peptide, and insulin levels decreased at week 12 in the C. lacerata group ( p < 0.05). These significant differences were not observed in the placebo group.

          Conclusion

          Twelve-week administration of C. lacerata in T2DM patients resulted in significant improvement in insulin resistance, especially in those with lower insulin sensitivity. A larger population study with a longer follow-up period and an effort to elucidate the mechanism is warranted to further assess the effects of C. lacerata on T2DM patients.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          A new equation to estimate glomerular filtration rate.

          Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values. To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates. Research studies and clinical populations ("studies") with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006. 8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16,032 participants in NHANES. GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age. In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m(2)), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m(2)), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m(2) (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m(2), and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%). The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR. The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use. National Institute of Diabetes and Digestive and Kidney Diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Use and abuse of HOMA modeling.

            Homeostatic model assessment (HOMA) is a method for assessing beta-cell function and insulin resistance (IR) from basal (fasting) glucose and insulin or C-peptide concentrations. It has been reported in >500 publications, 20 times more frequently for the estimation of IR than beta-cell function. This article summarizes the physiological basis of HOMA, a structural model of steady-state insulin and glucose domains, constructed from physiological dose responses of glucose uptake and insulin production. Hepatic and peripheral glucose efflux and uptake were modeled to be dependent on plasma glucose and insulin concentrations. Decreases in beta-cell function were modeled by changing the beta-cell response to plasma glucose concentrations. The original HOMA model was described in 1985 with a formula for approximate estimation. The computer model is available but has not been as widely used as the approximation formulae. HOMA has been validated against a variety of physiological methods. We review the use and reporting of HOMA in the literature and give guidance on its appropriate use (e.g., cohort and epidemiological studies) and inappropriate use (e.g., measuring beta-cell function in isolation). The HOMA model compares favorably with other models and has the advantage of requiring only a single plasma sample assayed for insulin and glucose. In conclusion, the HOMA model has become a widely used clinical and epidemiological tool and, when used appropriately, it can yield valuable data. However, as with all models, the primary input data need to be robust, and the data need to be interpreted carefully.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Pathophysiology of Type 2 Diabetes Mellitus

              Type 2 Diabetes Mellitus (T2DM), one of the most common metabolic disorders, is caused by a combination of two primary factors: defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. Because insulin release and activity are essential processes for glucose homeostasis, the molecular mechanisms involved in the synthesis and release of insulin, as well as in its detection are tightly regulated. Defects in any of the mechanisms involved in these processes can lead to a metabolic imbalance responsible for the development of the disease. This review analyzes the key aspects of T2DM, as well as the molecular mechanisms and pathways implicated in insulin metabolism leading to T2DM and insulin resistance. For that purpose, we summarize the data gathered up until now, focusing especially on insulin synthesis, insulin release, insulin sensing and on the downstream effects on individual insulin-sensitive organs. The review also covers the pathological conditions perpetuating T2DM such as nutritional factors, physical activity, gut dysbiosis and metabolic memory. Additionally, because T2DM is associated with accelerated atherosclerosis development, we review here some of the molecular mechanisms that link T2DM and insulin resistance (IR) as well as cardiovascular risk as one of the most important complications in T2DM.

                Author and article information

                Contributors
                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2022
                22 February 2022
                : 2022
                : 9537741
                Affiliations
                1Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
                2Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Republic of Korea
                3Gangnam Severance Hospital, Biochemical Research Center, Republic of Korea
                Author notes

                Academic Editor: Craig S. Nunemaker

                Author information
                https://orcid.org/0000-0002-3330-1825
                https://orcid.org/0000-0002-2921-6433
                https://orcid.org/0000-0001-8655-5258
                Article
                10.1155/2022/9537741
                8888035
                35242882
                b2a8788f-4680-42bc-bdf6-a19e2b854cfa
                Copyright © 2022 Arim Choi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 June 2021
                : 7 January 2022
                : 17 January 2022
                Funding
                Funded by: Fugencelltech, Korea
                Categories
                Research Article

                Comments

                Comment on this article

                Related Documents Log