70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The 8-aminoquinoline (8AQ) drug primaquine (PQ) is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ’s haemotoxic and anti-malarial properties are not fully understood.

          Methods

          In the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP) and mono-amine oxidase (MAO) families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements.

          Results

          Relative activity factor (RAF)-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species.

          Conclusions

          As a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Mapping the global extent of malaria in 2005.

          Guidelines for travellers on malaria chemoprophylaxis, the altitude limits of dominant vector species, climate suitability for malaria transmission and human population density thresholds have been used to map the crude spatial limits of Plasmodium falciparum and Plasmodium vivax transmission on a global scale. These maps suggest that 2.510 and 2.596 billion people were at possible risk of transmission of P. falciparum and P. vivax, respectively, in 2005. Globally, 75 per cent of humans who are exposed to P. falciparum risk live in only ten countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacokinetics of primaquine in man: identification of the carboxylic acid derivative as a major plasma metabolite.

            A method is described for the simultaneous determination of the carboxylic acid and N-acetyl-derivatives of primaquine, in plasma and urine. After oral administration of 45 mg primaquine, to five healthy volunteers, absorption was rapid, with peak primaquine levels of 153.3 +/- 23.5 ng/ml at 3 +/- 1 h, followed by an elimination half-life of 7.1 +/- 1.6 h, systemic clearance of 21.1 +/- 7.1 l/h, volume of distribution of 205 +/- 371 and cumulative urinary excretion of 1.3 +/- 0.9% of the dose. Primaquine underwent rapid conversion to the carboxylic acid metabolite of primaquine, which achieved peak levels of 1427 +/- 307 ng/ml at 7 +/- 4 h. Levels of this metabolite were sustained in excess of 1000 ng/ml for the 24 h study period, and no carboxyprimaquine was recovered in urine. N-acetyl primaquine was not detected in plasma or urine. Following [14C]-primaquine administration to one subject, plasma radioactivity levels rapidly exceeded primaquine concentrations. Plasma radioactivity was accounted for mainly as carboxyprimaquine . Though 64% of the dose was recovered over 143 h, as [14C]-radioactivity in urine, only 3.6% was due to primaquine. As neither carboxyprimaquine nor N- acetylprimaquine were detected in urine, the remaining radioactivity was due to unidentified metabolites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation.

              In humans, the antimalarial drug chloroquine (CQ) is metabolized into one major metabolite, N-desethylchloroquine (DCQ). Using human liver microsomes (HLM) and recombinant human cytochrome P450 (P450), we performed studies to identify the P450 isoform(s) involved in the N-desethylation of CQ. In HLM incubated with CQ, only DCQ could be detected. Apparent Km and Vmax values (mean +/- S.D.) for metabolite formation were 444 +/- 121 microM and 617 +/- 128 pmol/min/mg protein, respectively. In microsomes from a panel of 16 human livers phenotyped for 10 different P450 isoforms, DCQ formation was highly correlated with testosterone 6beta-hydroxylation (r = 0.80; p < 0.001), a CYP3A-mediated reaction, and CYP2C8-mediated paclitaxel alpha-hydroxylation (r = 0.82; p < 0.001). CQ N-desethylation was diminished when coincubated with quercetin (20-40% inhibition), ketoconazole, or troleandomycin (20-30% inhibition) and was strongly inhibited (80% inhibition) by a combination of ketoconazole and quercetin, which further corroborates the contribution of CYP2C8 and CYP3As. Of 10 cDNA-expressed human P450s examined, only CYP1A1, CYP2D6, CYP3A4, and CYP2C8 produced DCQ. CYP2C8 and CYP3A4 constituted low-affinity/high-capacity systems, whereas CYP2D6 was associated with higher affinity but a significantly lower capacity. This property may explain the ability of CQ to inhibit CYP2D6-mediated metabolism in vitro and in vivo. At therapeutically relevant concentrations ( approximately 100 microM CQ in the liver), CYP2C8, CYP3A4, and, to a much lesser extent, CYP2D6 are expected to account for most of the CQ N-desethylation.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central
                1475-2875
                2012
                2 August 2012
                : 11
                : 259
                Affiliations
                [1 ]Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
                [2 ]AB Sciex, 500 Old Connecticut Path, Framingham, MA, 01701, USA
                [3 ]National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
                Article
                1475-2875-11-259
                10.1186/1475-2875-11-259
                3438098
                22856549
                b2b68ac7-089b-4380-9c58-0ec687ad7cee
                Copyright ©2012 Pybus et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 May 2012
                : 23 July 2012
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article