13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The history of early bee diversification based on five genes plus morphology

      , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bees, the largest (>16,000 species) and most important radiation of pollinating insects, originated in early to mid-Cretaceous, roughly in synchrony with the angiosperms (flowering plants). Understanding the diversification of the bees and the coevolutionary history of bees and angiosperms requires a well supported phylogeny of bees (as well as angiosperms). We reconstructed a robust phylogeny of bees at the family and subfamily levels using a data set of five genes (4,299 nucleotide sites) plus morphology (109 characters). The molecular data set included protein coding (elongation factor-1alpha, RNA polymerase II, and LW rhodopsin), as well as ribosomal (28S and 18S) nuclear gene data. Analyses of both the DNA data set and the DNA+morphology data set by parsimony and Bayesian methods yielded a single well supported family-level tree topology that places Melittidae as a paraphyletic group at the base of the phylogeny of bees. This topology ("Melittidae-LT basal") is significantly better than a previously proposed alternative topology ("Colletidae basal") based both on likelihood and Bayesian methods. Our results have important implications for understanding the early diversification, historical biogeography, host-plant evolution, and fossil record of bees. The earliest branches of bee phylogeny include lineages that are predominantly host-plant specialists, suggesting that host-plant specificity is an ancestral trait in bees. Our results suggest an African origin for bees, because the earliest branches of the tree include predominantly African lineages. These results also help explain the predominance of Melittidae, Apidae, and Megachilidae among the earliest fossil bees.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          MrBayes 3: Bayesian phylogenetic inference under mixed models.

          MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models. This allows the user to analyze heterogeneous data sets consisting of different data types-e.g. morphological, nucleotide, and protein-and to explore a wide variety of structured models mixing partition-unique and shared parameters. The program employs MPI to parallelize Metropolis coupling on Macintosh or UNIX clusters.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            MRBAYES: Bayesian inference of phylogenetic trees

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bayes Factors

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 10 2006
                October 10 2006
                October 02 2006
                October 10 2006
                : 103
                : 41
                : 15118-15123
                Article
                10.1073/pnas.0604033103
                1586180
                17015826
                b2b8cbec-6cf2-4d85-bc20-97a57cc76f93
                © 2006
                History

                Comments

                Comment on this article