20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A summary of Blastocystis subtypes in North and South America

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Blastocystis is a stramenopile of worldwide significance due to its capacity to colonize several hosts. Based on its high level of genetic diversity, Blastocystis is classified into global ribosomal subtypes (STs). The aim of this study was to conduct a summary of Blastocystis STs and depict their distribution throughout North and South America; we did this by assembling maps and identifying its most common 18S alleles based on diverse studies that had been reported all over the continent and whose Blastocystis-positive samples were obtained from numerous hosts.

          Results

          Thirty-nine articles relating to nine countries from the American continent were considered, revealing that ST1 (33.3%), ST2 (21.9%), ST3 (37.9%), ST4 (1.7%), ST5 (0.4%), ST6 (1.2%), ST7 (1%), ST8 (0.7%), ST9 (0.4%), ST12 (0.3%), Novel ST (1.1%) and Mixed STs (0.2%) occurred in humans. The STs in other animal hosts were ST1 (6.5%), ST2 (6.5%), ST3 (4.7%), ST4 (7.2%), ST5 (15.9%), ST6 (17.3%), ST7 (3.6%), ST8 (20.6%), ST10 (9%), ST14 (3.6%), ST17 (1.1%) and Novel ST (4%). The countries that presented the most abundant variety of studies reporting STs were the USA with 14 STs, Brazil with 9 STs and Colombia with 8 STs. Additionally, new variants had been described in the last few years, which have increased the prevalence of these subtypes in the countries studied, such as Novel ST (1.1%) and Mixed STs (0.2%) in humans and Novel ST (4%) in animals.

          Conclusions

          This summary updates the epidemiological situation on the distribution of Blastocystis STs in North and South America and will augment current knowledge on the prevalence and genetic diversity of this protozoan.

          Electronic supplementary material

          The online version of this article (10.1186/s13071-019-3641-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The gut mycobiome of the Human Microbiome Project healthy cohort

          Background Most studies describing the human gut microbiome in healthy and diseased states have emphasized the bacterial component, but the fungal microbiome (i.e., the mycobiome) is beginning to gain recognition as a fundamental part of our microbiome. To date, human gut mycobiome studies have primarily been disease centric or in small cohorts of healthy individuals. To contribute to existing knowledge of the human mycobiome, we investigated the gut mycobiome of the Human Microbiome Project (HMP) cohort by sequencing the Internal Transcribed Spacer 2 (ITS2) region as well as the 18S rRNA gene. Results Three hundred seventeen HMP stool samples were analyzed by ITS2 sequencing. Fecal fungal diversity was significantly lower in comparison to bacterial diversity. Yeast dominated the samples, comprising eight of the top 15 most abundant genera. Specifically, fungal communities were characterized by a high prevalence of Saccharomyces, Malassezia, and Candida, with S. cerevisiae, M. restricta, and C. albicans operational taxonomic units (OTUs) present in 96.8, 88.3, and 80.8% of samples, respectively. There was a high degree of inter- and intra-volunteer variability in fungal communities. However, S. cerevisiae, M. restricta, and C. albicans OTUs were found in 92.2, 78.3, and 63.6% of volunteers, respectively, in all samples donated over an approximately 1-year period. Metagenomic and 18S rRNA gene sequencing data agreed with ITS2 results; however, ITS2 sequencing provided greater resolution of the relatively low abundance mycobiome constituents. Conclusions Compared to bacterial communities, the human gut mycobiome is low in diversity and dominated by yeast including Saccharomyces, Malassezia, and Candida. Both inter- and intra-volunteer variability in the HMP cohort were high, revealing that unlike bacterial communities, an individual’s mycobiome is no more similar to itself over time than to another person’s. Nonetheless, several fungal species persisted across a majority of samples, evidence that a core gut mycobiome may exist. ITS2 sequencing data provided greater resolution of the mycobiome membership compared to metagenomic and 18S rRNA gene sequencing data, suggesting that it is a more sensitive method for studying the mycobiome of stool samples. Electronic supplementary material The online version of this article (10.1186/s40168-017-0373-4) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA barcoding of blastocystis.

            We have developed a simple method for subtyping the intestinal protistan parasite Blastocystis using an approach equivalent to DNA barcoding in animals. Amplification of a 600 bp region of the small subunit ribosomal RNA gene followed by single primer sequencing of the PCR product provides enough data to assign isolates to specific subtypes unambiguously. We believe that this approach will prove useful in future epidemiological studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic diversity of blastocystis in livestock and zoo animals.

              Blastocystis is a common unicellular anaerobic eukaryote that inhabits the large intestine of many animals worldwide, including humans. The finding of Blastocystis in faeces in mammals and birds has led to proposals of zoonotic potential and that these hosts may be the source of many human infections. Blastocystis is, however, a genetically diverse complex of many distinct organisms (termed subtypes; STs), and sampling to date has been limited, both geographically and in the range of hosts studied. In order to expand our understanding of host specificity of Blastocystis STs, 557 samples were examined from various non-primate animal hosts and from a variety of different countries in Africa, Asia and Europe. STs were identified using 'barcoding' of the small subunit rRNA gene using DNA extracted either from culture or directly from faeces. The host and geographic range of several STs has thereby been greatly expanded and the evidence suggests that livestock is not a major contributor to human infection. Two new STs were detected among the barcode sequences obtained; for these, and for three others where the data were incomplete, the corresponding genes were fully sequenced and phylogenetic analysis was undertaken. Copyright © 2013 Elsevier GmbH. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                paulaandr.jimenez@urosario.edu.co
                jesus.jaimes@urosario.edu.co
                juand.ramirez@urosario.edu.co
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                29 July 2019
                29 July 2019
                2019
                : 12
                : 376
                Affiliations
                [1 ]ISNI 0000 0001 2205 5940, GRID grid.412191.e, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, ; Bogotá, Colombia
                [2 ]ISNI 0000 0001 2205 5940, GRID grid.412191.e, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, ; Bogotá, Colombia
                Author information
                http://orcid.org/0000-0002-1344-9312
                Article
                3641
                10.1186/s13071-019-3641-2
                6664531
                31358042
                b2bbda26-d446-4bc9-9c98-9ad59a042796
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 28 March 2019
                : 25 July 2019
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Parasitology
                blastocystis,distribution,diversity,geographic,north and south america,subtypes
                Parasitology
                blastocystis, distribution, diversity, geographic, north and south america, subtypes

                Comments

                Comment on this article