136
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Delivery of plasmid DNA expression vector for keratinocyte growth factor-1 using electroporation to improve cutaneous wound healing in a septic rat model.

      Wound Repair and Regeneration
      Analysis of Variance, Animals, Cells, Cultured, DNA Primers, Disease Models, Animal, Electroporation, Fibroblast Growth Factor 7, genetics, therapeutic use, Genetic Therapy, methods, Plasmids, Polymerase Chain Reaction, Rats, Rats, Sprague-Dawley, Sepsis, physiopathology, therapy, Skin, Transfection, Wound Healing, physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have previously shown that wound healing was improved in a diabetic mouse model of impaired wound healing following transfection with keratinocyte growth factor-1 (KGF-1) cDNA. We now extend these findings to the characterization of the effects of DNA plasmid vectors delivered to rats using electroporation (EP) in vivo in a sepsis-based model of impaired wound healing. To assess plasmid transfection and wound healing, gWIZ luciferase and PCDNA3.1/KGF-1 expression vectors were used, respectively. Cutaneous wounds were produced using an 8 mm-punch biopsy in Sprague-Dawley rats in which healing was impaired by cecal ligation-induced sepsis. We used National Institutes of Health image analysis software and histologic assessment to analyze wound closure and found that EP increased expression of gWIZ luciferase vector up to 53-fold compared with transfection without EP (p < 0.001). EP-assisted plasmid transfection was found to be localized to skin. Septic rats had a 4.7 times larger average wound area on day 9 compared with control (p < 0.001). Rats that underwent PCDNA3.1/KGF-1 transfection with EP had 60% smaller wounds on day 12 compared with vector without EP (p < 0.009). Quality of healing with KGF-1 vector plus EP scored 3.0 +/- 0.3 and was significantly better than that of 1.8 +/- 0.3 for treatment with vector alone (p < 0.05). We conclude that both the rate and quality of healing were improved with DNA plasmid expression vector for growth factor delivered with EP to septic rats.

          Related collections

          Author and article information

          Comments

          Comment on this article