39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-molecule studies of the stringency factors and rates governing the polymerization of RecA on double-stranded DNA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RecA is a key protein in homologous recombination. During recombination, one single-stranded DNA (ssDNA) bound to site I in RecA exchanges Watson–Crick pairing with a sequence-matched ssDNA that was part of a double-stranded DNA molecule (dsDNA) bound to site II in RecA. After strand exchange, heteroduplex dsDNA is bound to site I. In vivo, direct polymerization of RecA on dsDNA through site I does not occur, though it does in vitro. The mechanisms underlying the difference have been unclear. We use single-molecule experiments to decouple the two steps involved in polymerization: nucleation and elongation. We find that elongation is governed by a fundamental clock that is insensitive to force and RecA concentration from 0.2 and 6 µM, though rates depend on ionic conditions. Thus, we can probe nucleation site stability by creating nucleation sites at high force and then measuring elongation as a function of applied force. We find that in the presence of ATP hydrolysis a minimum force is required for polymerization. The minimum force decreases with increasing RecA or ATP concentrations. We propose that force reduces the off-rate for nucleation site binding and that nucleation site stability is the stringency factor that prevents in vivo polymerization.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Biochemistry of homologous recombination in Escherichia coli.

          Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The bacterial RecA protein and the recombinational DNA repair of stalled replication forks.

            The primary function of bacterial recombination systems is the nonmutagenic repair of stalled or collapsed replication forks. The RecA protein plays a central role in these repair pathways, and its biochemistry must be considered in this context. RecA protein promotes DNA strand exchange, a reaction that contributes to fork regression and DNA end invasion steps. RecA protein activities, especially formation and disassembly of its filaments, affect many additional steps. So far, Escherichia coli RecA appears to be unique among its nearly ubiquitous family of homologous proteins in that it possesses a motorlike activity that can couple the branch movement in DNA strand exchange to ATP hydrolysis. RecA is also a multifunctional protein, serving in different biochemical roles for recombinational processes, SOS induction, and mutagenic lesion bypass. New biochemical and structural information highlights both the similarities and distinctions between RecA and its homologs. Increasingly, those differences can be rationalized in terms of biological function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanical stability of single DNA molecules.

              Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                May 2011
                May 2011
                18 January 2011
                18 January 2011
                : 39
                : 9
                : 3781-3791
                Affiliations
                1Department of Physics and 2Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 617 312 0072; Fax: +1 617 495 0416; Email: feinst@ 123456post.harvard.edu
                Article
                gkr013
                10.1093/nar/gkr013
                3089484
                21245047
                b2bde7db-e272-4cab-9f7c-a539880ad075
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 August 2010
                : 2 November 2010
                : 3 November 2010
                Page count
                Pages: 11
                Categories
                Nucleic Acid Enzymes

                Genetics
                Genetics

                Comments

                Comment on this article