7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A SARS-CoV protein, ORF-6, induces caspase-3 mediated, ER stress and JNK-dependent apoptosis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute respiratory syndrome (SARS) coronavirus (CoV) spread from China to more than 30 countries, causing severe outbreaks of atypical pneumonia and over 800 deaths worldwide. CoV primarily infects the upper respiratory and gastrointestinal tract; however, SARS-CoV has a unique pathogenesis because it infects both the upper and lower respiratory tracts and leads to human respiratory diseases. SARS-CoV genome has shown containing 14 open reading frames (ORFs) and 8 of them encode novel proteins. Previous reports show that overexpression of ORF-3a, ORF-3b and ORF-7a induce apoptosis. In this report, we demonstrate that overexpression of ORF-6 also induces apoptosis and that Caspase-3 inhibitor and JNK inhibitor block ORF-6 induced apoptosis. Importantly, the protein level of ER chaperon protein, GRP94, was up-regulated when ORF-6 was overexpressed. All these data suggest that ORF-6 induces apoptosis via Caspase-3 mediated, ER stress and JNK-dependent pathways.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome

          The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. The novel coronavirus might have a role in causing SARS. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel coronavirus associated with severe acute respiratory syndrome.

            A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

              P Rota (2003)
              In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biochim Biophys Acta Gen Subj
                Biochim Biophys Acta Gen Subj
                Biochimica et Biophysica Acta. General Subjects
                Elsevier B.V.
                0304-4165
                1872-8006
                28 July 2008
                December 2008
                28 July 2008
                : 1780
                : 12
                : 1383-1387
                Affiliations
                [a ]Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
                [b ]Protein Science Laboratory of Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
                Author notes
                [* ]Corresponding authors. Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China. Tel.: +852 2358 7340; fax: +852 2358 1559. boyxie@ 123456ust.hk
                [1]

                Authors contributed equally to the work.

                Article
                S0304-4165(08)00160-8
                10.1016/j.bbagen.2008.07.009
                7115782
                18708124
                b2c42612-8db3-4ff4-9b72-39b1770446e9
                Copyright © 2008 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 17 December 2007
                : 14 July 2008
                : 21 July 2008
                Categories
                Article

                orf-6,severe acute respiratory syndrome coronavirus,endoplasmic reticulum,caspase,apoptosis,c-jun n-terminal kinase,er stress

                Comments

                Comment on this article