7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computer Vision, Machine Learning, and the Promise of Phenomics in Ecology and Evolutionary Biology

      , , , ,
      Frontiers in Ecology and Evolution
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For centuries, ecologists and evolutionary biologists have used images such as drawings, paintings and photographs to record and quantify the shapes and patterns of life. With the advent of digital imaging, biologists continue to collect image data at an ever-increasing rate. This immense body of data provides insight into a wide range of biological phenomena, including phenotypic diversity, population dynamics, mechanisms of divergence and adaptation, and evolutionary change. However, the rate of image acquisition frequently outpaces our capacity to manually extract meaningful information from images. Moreover, manual image analysis is low-throughput, difficult to reproduce, and typically measures only a few traits at a time. This has proven to be an impediment to the growing field of phenomics – the study of many phenotypic dimensions together. Computer vision (CV), the automated extraction and processing of information from digital images, provides the opportunity to alleviate this longstanding analytical bottleneck. In this review, we illustrate the capabilities of CV as an efficient and comprehensive method to collect phenomic data in ecological and evolutionary research. First, we briefly review phenomics, arguing that ecologists and evolutionary biologists can effectively capture phenomic-level data by taking pictures and analyzing them using CV. Next we describe the primary types of image-based data, review CV approaches for extracting them (including techniques that entail machine learning and others that do not), and identify the most common hurdles and pitfalls. Finally, we highlight recent successful implementations and promising future applications of CV in the study of phenotypes. In anticipation that CV will become a basic component of the biologist’s toolkit, our review is intended as an entry point for ecologists and evolutionary biologists that are interested in extracting phenotypic information from digital images.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deep learning.

            Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Random Forests

                Bookmark

                Author and article information

                Journal
                Frontiers in Ecology and Evolution
                Front. Ecol. Evol.
                Frontiers Media SA
                2296-701X
                April 21 2021
                April 21 2021
                : 9
                Article
                10.3389/fevo.2021.642774
                b2ccb797-9fa7-465d-b729-eb94ef60f8cb
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article