60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Transient receptor potential (TRP) receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG) sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established.

          Methods

          We have studied TRPV1, TRPV3, TRPV4, and TRPM8 in nerves (n = 14) and skin from patients with nerve injury, avulsed dorsal root ganglia (DRG) (n = 11), injured spinal nerve roots (n = 9), diabetic neuropathy skin (n = 8), non-diabetic neuropathic nerve biopsies (n = 6), their respective control tissues, and human post mortem spinal cord, using immunohistological methods.

          Results

          TRPV1 and TRPV3 were significantly increased in injured brachial plexus nerves, and TRPV1 in hypersensitive skin after nerve repair, whilst TRPV4 was unchanged. TRPM8 was detected in a few medium diameter DRG neurons, and was unchanged in DRG after avulsion injury, but was reduced in axons and myelin in injured nerves. In diabetic neuropathy skin, TRPV1 expressing sub- and intra-epidermal fibres were decreased, as was expression in surviving fibres. TRPV1 was also decreased in non-diabetic neuropathic nerves. Immunoreactivity for TRPV3 was detected in basal keratinocytes, with a significant decrease of TRPV3 in diabetic skin. TRPV1-immunoreactive nerves were present in injured dorsal spinal roots and dorsal horn of control spinal cord, but not in ventral roots, while TRPV3 and TRPV4 were detected in spinal cord motor neurons.

          Conclusion

          The accumulation of TRPV1 and TRPV3 in peripheral nerves after injury, in spared axons, matches our previously reported changes in avulsed DRG. Reduction of TRPV1 levels in nerve fibres in diabetic neuropathy skin may result from the known decrease of nerve growth factor (NGF) levels. The role of TRPs in keratinocytes is unknown, but a relationship to changes in NGF levels, which is produced by keratinocytes, deserves investigation. TRPV1 represents a more selective therapeutic target than other TRPs for pain and hypersensitivity, particularly in post-traumatic neuropathy.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Impaired nociception and pain sensation in mice lacking the capsaicin receptor.

          The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the "pain" pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43 degrees C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. VR1-/- mice showed normal responses to noxious mechanical stimuli but exhibited no vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for selective modalities of pain sensation and for tissue injury-induced thermal hyperalgesia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A TRP channel that senses cold stimuli and menthol.

            A distinct subset of sensory neurons are thought to directly sense changes in thermal energy through their termini in the skin. Very little is known about the molecules that mediate thermoreception by these neurons. Vanilloid Receptor 1 (VR1), a member of the TRP family of channels, is activated by noxious heat. Here we describe the cloning and characterization of TRPM8, a distant relative of VR1. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neurons. Cells overexpressing the TRPM8 channel can be activated by cold temperatures and by a cooling agent, menthol. Our identification of a cold-sensing TRP channel in a distinct subpopulation of sensory neurons implicates an expanded role for this family of ion channels in somatic sensory detection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A capsaicin-receptor homologue with a high threshold for noxious heat.

              Pain-producing heat is detected by several classes of nociceptive sensory neuron that differ in their thermal response thresholds. The cloned capsaicin receptor, also known as the vanilloid receptor subtype 1 (VR1), is a heat-gated ion channel that has been proposed to mediate responses of small-diameter sensory neurons to moderate (43 degrees C) thermal stimuli. VR1 is also activated by protons, indicating that it may participate in the detection of noxious thermal and chemical stimuli in vivo. Here we identify a structurally related receptor, VRL-1, that does not respond to capsaicin, acid or moderate heat. Instead, VRL-1 is activated by high temperatures, with a threshold of approximately 52 degrees C. Within sensory ganglia, VRL-1 is most prominently expressed by a subset of medium- to large-diameter neurons, making it a candidate receptor for transducing high-threshold heat responses in this class of cells. VRL-1 transcripts are not restricted to the sensory nervous system, indicating that this channel may be activated by stimuli other than heat. We propose that responses to noxious heat involve these related, but distinct, ion-channel subtypes that together detect a range of stimulus intensities.
                Bookmark

                Author and article information

                Journal
                BMC Neurol
                BMC Neurology
                BioMed Central (London )
                1471-2377
                2007
                23 May 2007
                : 7
                : 11
                Affiliations
                [1 ]Peripheral Neuropathy Unit, Imperial College, Hammersmith Hospital, London, UK
                [2 ]Neurology and Gastrointestinal Diseases Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
                [3 ]Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, UK
                Article
                1471-2377-7-11
                10.1186/1471-2377-7-11
                1892784
                17521436
                b2d0f21d-84bd-4b66-b144-ddd6c3558799
                Copyright © 2007 Facer et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 November 2006
                : 23 May 2007
                Categories
                Research Article

                Neurology
                Neurology

                Comments

                Comment on this article