32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Extracellular Matrix Contributes to Mechanotransduction in Uterine Fibroids

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, and hydration, as well as other ECM components. In this review we present evidence that the stiffness of fibroid tissue has a direct effect on the growth of the tumor through the induction of fibrosis. Fibrosis has two characteristics: (1) resistance to apoptosis leading to the persistence of cells and (2) secretion of collagen and other components of the ECM such a proteoglycans by those cells leading to abundant disposition of highly cross-linked, disoriented, and often widely dispersed collagen fibrils. Fibrosis affects cell growth by mechanotransduction, the dynamic signaling system whereby mechanical forces initiate chemical signaling in cells. Data indicate that the structurally disordered and abnormally formed ECM of uterine fibroids contributes to fibroid formation and growth. An appreciation of the critical role of ECM stiffness to fibroid growth may lead to new strategies for treatment of this common disease.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Tensional homeostasis and the malignant phenotype.

          Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation. Matrix stiffness perturbs epithelial morphogenesis by clustering integrins to enhance ERK activation and increase ROCK-generated contractility and focal adhesions. Contractile, EGF-transformed epithelia with elevated ERK and Rho activity could be phenotypically reverted to tissues lacking focal adhesions if Rho-generated contractility or ERK activity was decreased. Thus, ERK and Rho constitute part of an integrated mechanoregulatory circuit linking matrix stiffness to cytoskeletal tension through integrins to regulate tissue phenotype.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            High cumulative incidence of uterine leiomyoma in black and white women: Ultrasound evidence

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lysyl oxidase: an oxidative enzyme and effector of cell function.

              Lysyl oxidase (LOX) oxidizes the side chain of peptidyl lysine converting specific lysine residues to residues of alpha-aminoadipic-delta-semialdehyde. This posttranslational chemical change permits the covalent crosslinking of the component chains of collagen and those of elastin, thus stabilizing the fibrous deposits of these proteins in the extracellular matrix. Four LOX-like (LOXL) proteins with varying degrees of similarity to LOX have been described, constituting a family of related proteins. LOX is synthesized as a preproprotein which emerges from the cell as proLOX and then is processed to the active enzyme by proteolysis. In addition to elastin and collagen, LOX can oxidize lysine within a variety of cationic proteins, suggesting that its functions extend beyond its role in the stabilization of the extracellular matrix. Indeed, recent findings reveal that LOX and LOXL proteins markedly influence cell behavior including chemotactic responses, proliferation, and shifts between the normal and malignant phenotypes.
                Bookmark

                Author and article information

                Journal
                Obstet Gynecol Int
                Obstet Gynecol Int
                OGI
                Obstetrics and Gynecology International
                Hindawi Publishing Corporation
                1687-9589
                1687-9597
                2014
                3 July 2014
                : 2014
                : 783289
                Affiliations
                1Duke University School of Medicine, Durham, NC 27710, USA
                2Unit on Reproductive Endocrinology and Infertility, Program on Pediatric and Adult Endocrinology, NICHD, NIH, Bethesda, MD 20892-1109, USA
                Author notes

                Academic Editor: Peter E. Schwartz

                Article
                10.1155/2014/783289
                4106177
                25110476
                b2daa57a-0f70-4b32-8057-ab3ec3303f99
                Copyright © 2014 Phyllis C. Leppert et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 January 2014
                : 28 May 2014
                : 11 June 2014
                Categories
                Review Article

                Obstetrics & Gynecology
                Obstetrics & Gynecology

                Comments

                Comment on this article