17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Measuring the Sensitivity of Single-locus “Neutrality Tests” Using a Direct Perturbation Approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A large number of statistical tests have been proposed to detect natural selection based on a sample of variation at a single genetic locus. These tests measure the deviation of the allelic frequency distribution observed within populations from the distribution expected under a set of assumptions that includes both neutral evolution and equilibrium population demography. The present study considers a new way to assess the statistical properties of these tests of selection, by their behavior in response to direct perturbations of the steady-state allelic frequency distribution, unconstrained by any particular nonequilibrium demographic scenario. Results from Monte Carlo computer simulations indicate that most tests of selection are more sensitive to perturbations of the allele frequency distribution that increase the variance in allele frequencies than to perturbations that decrease the variance. Simulations also demonstrate that it requires, on average, 4 N generations ( N is the diploid effective population size) for tests of selection to relax to their theoretical, steady-state distributions following different perturbations of the allele frequency distribution to its extremes. This relatively long relaxation time highlights the fact that these tests are not robust to violations of the other assumptions of the null model besides neutrality. Lastly, genetic variation arising under an example of a regularly cycling demographic scenario is simulated. Tests of selection performed on this last set of simulated data confirm the confounding nature of these tests for the inference of natural selection, under a demographic scenario that likely holds for many species. The utility of using empirical, genomic distributions of test statistics, instead of the theoretical steady-state distribution, is discussed as an alternative for improving the statistical inference of natural selection.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular signatures of natural selection.

          There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating to the analysis of large-scale genomic data sets.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The hitch-hiking effect of a favourable gene.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The sampling theory of selectively neutral alleles.

              W.J. Ewens (1972)
                Bookmark

                Author and article information

                Journal
                Mol Biol Evol
                molbiolevol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                January 2010
                10 September 2009
                10 September 2009
                : 27
                : 1
                : 73-89
                Affiliations
                Department of Organismic and Evolutionary Biology, Harvard University
                Author notes
                [* ] Corresponding author: E-mail: daniel.garrigan@ 123456rochester.edu .
                [†]

                Present address: Department of Biology, University of Rochester.

                Associate editor: John H. McDonald

                Article
                10.1093/molbev/msp209
                2794309
                19744997
                b2db4445-2cc4-4895-956d-186d7d9c444c
                © 2009 The Authors

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Research Articles

                Molecular biology
                dna sequence,infinite-sites model,polymorphism,infinite-allele model,natural selection

                Comments

                Comment on this article