14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insulin-like growth factors: actions on the skeleton

      , ,
      Journal of Molecular Endocrinology
      Bioscientifica

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The discovery of the growth hormone (GH)-mediated somatic factors (somatomedins), insulin-like growth factor (IGF)-I and -II, has elicited an enormous interest primarily among endocrinologists who study growth and metabolism. The advancement of molecular endocrinology over the past four decades enables investigators to re-examine and refine the established somatomedin hypothesis. Specifically, gene deletions, transgene overexpression or more recently, cell-specific gene-ablations, have enabled investigators to study the effects of the Igf1 and Igf2 genes in temporal and spatial manners. The GH/IGF axis, acting in an endocrine and autocrine/paracrine fashion, is the major axis controlling skeletal growth. Studies in rodents have clearly shown that IGFs regulate bone length of the appendicular skeleton evidenced by changes in chondrocytes of the proliferative and hypertrophic zones of the growth plate. IGFs affect radial bone growth and regulate cortical and trabecular bone properties via their effects on osteoblast, osteocyte and osteoclast function. Interactions of the IGFs with sex steroid hormones and the parathyroid hormone demonstrate the significance and complexity of the IGF axis in the skeleton. Finally, IGFs have been implicated in skeletal aging. Decreases in serum IGFs during aging have been correlated with reductions in bone mineral density and increased fracture risk. This review highlights many of the most relevant studies in the IGF research landscape, focusing in particular on IGFs effects on the skeleton.

          Related collections

          Most cited references229

          • Record: found
          • Abstract: found
          • Article: not found

          Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).

          Newborn mice homozygous for a targeted disruption of insulin-like growth factor gene (Igf-1) exhibit a growth deficiency similar in severity to that previously observed in viable Igf-2 null mutants (60% of normal birthweight). Depending on genetic background, some of the Igf-1(-/-) dwarfs die shortly after birth, while others survive and reach adulthood. In contrast, null mutants for the Igf1r gene die invariably at birth of respiratory failure and exhibit a more severe growth deficiency (45% normal size). In addition to generalized organ hypoplasia in Igf1r(-/-) embryos, including the muscles, and developmental delays in ossification, deviations from normalcy were observed in the central nervous system and epidermis. Igf-1(-/-)/Igf1r(-/-) double mutants did not differ in phenotype from Igf1r(-/-) single mutants, while in Igf-2(-)/Igf1r(-/-) and Igf-1(-/-)/Igf-2(-) double mutants, which are phenotypically identical, the dwarfism was further exacerbated (30% normal size). The roles of the IGFs in mouse embryonic development, as revealed from the phenotypic differences between these mutants, are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parental imprinting of the mouse insulin-like growth factor II gene.

            We are studying mice that carry a targeted disruption of the gene encoding insulin-like growth factor II (IGF-II). Transmission of this mutation through the male germline results in heterozygous progeny that are growth deficient. In contrast, when the disrupted gene is transmitted maternally, the heterozygous offspring are phenotypically normal. Therefore, the difference in growth phenotypes depends on the type of gamete contributing the mutated allele. Homozygous mutants are indistinguishable in appearance from growth-deficient heterozygous siblings. Nuclease protection and in situ hybridization analyses of the transcripts from the wild-type and mutated alleles indicate that only the paternal allele is expressed in embryos, while the maternal allele is silent. An exception is the choroid plexus and leptomeninges, where both alleles are transcriptionally active. These results demonstrate that IGF-II is indispensable for normal embryonic growth and that the IGF-II gene is subject to tissue-specific parental imprinting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Normal growth and development in the absence of hepatic insulin-like growth factor I.

              The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I.
                Bookmark

                Author and article information

                Journal
                Journal of Molecular Endocrinology
                J Mol Endocrinol
                Bioscientifica
                0952-5041
                1479-6813
                May 22 2018
                July 2018
                July 2018
                April 06 2018
                : 61
                : 1
                : T115-T137
                Article
                10.1530/JME-17-0298
                5966339
                29626053
                b2f6a80f-3344-4fbc-9984-0f1c1cc25db2
                © 2018
                History

                Comments

                Comment on this article