2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dexmedetomidine attenuates the neurotoxicity of propofol toward primary hippocampal neurons in vitro via Erk1/2/CREB/BDNF signaling pathways

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Propofol is a commonly used general anesthetic for the induction and maintenance of anesthesia and critical care sedation in children, which may add risk to poor neurodevelopmental outcome. We aimed to evaluate the effect of propofol toward primary hippocampal neurons in vitro and the possibly neuroprotective effect of dexmedetomidine pretreatment, as well as the underlying mechanism.

          Materials and procedures

          Primary hippocampal neurons were cultured for 8 days in vitro and pretreated with or without dexmedetomidine or phosphorylation inhibitors prior to propofol exposure. Cell viability was measured using cell counting kit-8 assays. Cell apoptosis was evaluated using a transmission electron microscope and flow cytometry analyses. Levels of mRNAs encoding signaling pathway intermediates were assessed using qRT-PCR. The expression of signaling pathway intermediates and apoptosis-related proteins was determined by Western blotting.

          Results

          Propofol significantly reduced cell viability, induced neuronal apoptosis, and downregulated the expression of the BDNF mRNA and the levels of the phospho-Erk1/2 (p-Erk1/2), phospho-CREB (p-CREB), and BDNF proteins. The dexmedetomidine pretreatment increased neuronal viability and alleviated propofol-induced neuronal apoptosis and rescued the propofol-induced downregulation of both the BDNF mRNA and the levels of the p-Erk1/2, p-CREB, and BDNF proteins. However, this neuroprotective effect was abolished by PD98059, H89, and KG501, further preventing the dexmedetomidine pretreatment from rescuing the propofol-induced downregulation of the BDNF mRNA and p-Erk1/2, p-CREB, and BDNF proteins.

          Conclusion

          Dexmedetomidine alleviates propofol-induced cytotoxicity toward primary hippocampal neurons in vitro, which correlated with the activation of Erk1/2/CREB/BDNF signaling pathways.

          Related collections

          Most cited references 30

          • Record: found
          • Abstract: found
          • Article: not found

          The molecular biology of memory storage: a dialogue between genes and synapses.

           Eric Kandel,  E Kandel (2001)
          One of the most remarkable aspects of an animal's behavior is the ability to modify that behavior by learning, an ability that reaches its highest form in human beings. For me, learning and memory have proven to be endlessly fascinating mental processes because they address one of the fundamental features of human activity: our ability to acquire new ideas from experience and to retain these ideas over time in memory. Moreover, unlike other mental processes such as thought, language, and consciousness, learning seemed from the outset to be readily accessible to cellular and molecular analysis. I, therefore, have been curious to know: What changes in the brain when we learn? And, once something is learned, how is that information retained in the brain? I have tried to address these questions through a reductionist approach that would allow me to investigate elementary forms of learning and memory at a cellular molecular level-as specific molecular activities within identified nerve cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Function and regulation of CREB family transcription factors in the nervous system.

            CREB and its close relatives are now widely accepted as prototypical stimulus-inducible transcription factors. In many cell types, these factors function as effector molecules that bring about cellular changes in response to discrete sets of instructions. In neurons, a wide range of extracellular stimuli are capable of activating CREB family members, and CREB-dependent gene expression has been implicated in complex and diverse processes ranging from development to plasticity to disease. In this review, we focus on the current level of understanding of where, when, and how CREB family members function in the nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Neurodevelopmental outcome at two years of age after general and awake-regional anaesthesia in infancy: a randomised controlled trial

              Summary Background There is pre-clinical evidence that general anaesthetics affect brain development. There is mixed evidence from cohort studies that young children exposed to anaesthesia may have an increased risk of poorer neurodevelopmental outcome. This trial aims to determine if GA in infancy has any impact on neurodevelopmental outcome. The primary outcome for the trial is neurodevelopmental outcome at 5 years of age. The secondary outcome is neurodevelopmental outcome at two years of age and is reported here. Methods We performed an international assessor-masked randomised controlled equivalence trial in infants less than 60 weeks post-menstrual age, born at greater than 26 weeks gestational age having inguinal herniorrhaphy. Infants were excluded if they had existing risk factors for neurologic injury. Infants were randomly assigned to awake-regional (RA) or sevoflurane-based general anaesthesia (GA). Web-based randomisation was performed in blocks of two or four and stratified by site and gestational age at birth. The outcome for analysis was the composite cognitive score of the Bayley Scales of Infant and Toddler Development, Third Edition. The analysis was as-per-protocol adjusted for gestational age at birth. A difference in means of five points (1/3 SD) was predefined as the clinical equivalence margin. The trial was registered at ANZCTR, ACTRN12606000441516 and ClinicalTrials.gov, NCT00756600. Findings Between February 2007, and January 2013, 363 infants were randomised to RA and 359 to GA. Outcome data were available for 238 in the RA and 294 in the GA arms. The median duration of anaesthesia in the GA arm was 54 minutes. For the cognitive composite score there was equivalence in means between arms (RA-GA: +0·169, 95% CI −2·30 to +2·64). Interpretation For this secondary outcome we found no evidence that just under an hour of sevoflurane anaesthesia in infancy increases the risk of adverse neurodevelopmental outcome at two years of age compared to RA.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2019
                19 February 2019
                : 13
                : 695-706
                Affiliations
                [1 ]Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China, xybdoctor@ 123456163.com
                [2 ]Department of Anesthesiology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
                [3 ]Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China, docxiaoqiang@ 123456163.com
                Author notes
                Correspondence: Yubo Xie, Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuang-yong Road, Nanning 530021, Guangxi, China, Tel +86 186 7795 8208, Email xybdoctor@ 123456163.com
                Qiang Xiao, Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuang-yong Road, Nanning 530021, Guangxi, China, Email docxiaoqiang@ 123456163.com
                [*]

                These authors contributed equally to this work

                Article
                dddt-13-695
                10.2147/DDDT.S188436
                6387615
                © 2019 Tu et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article