41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dental Stem Cell-Derived Secretome/Conditioned Medium: The Future for Regenerative Therapeutic Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regenerative medicine literature has proposed mesenchymal stem/progenitor cell- (MSC-) mediated therapeutic approaches for their great potential in managing various diseases and tissue defects. Dental MSCs represent promising alternatives to nondental MSCs, owing to their ease of harvesting with minimally invasive procedures. Their mechanism of action has been attributed to their cell-to-cell contacts as well as to the paracrine effect of their secreted factors, namely, secretome. In this context, dental MSC-derived secretome/conditioned medium could represent a unique cell-free regenerative and therapeutic approach, with fascinating advantages over parent cells. This article reviews the application of different populations of dental MSC secretome/conditioned medium in in vitro and in vivo animal models, highlights their significant implementation in treating different tissue' diseases, and clarifies the significant bioactive molecules involved in their regenerative potential. The analysis of these recent studies clearly indicate that dental MSCs' secretome/conditioned medium could be effective in treating neural injuries, for dental tissue regeneration, in repairing bone defects, and in managing cardiovascular diseases, diabetes mellitus, hepatic regeneration, and skin injuries, through regulating anti-inflammatory, antiapoptotic, angiogenic, osteogenic, and neurogenic mediators.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in bone tissue engineering scaffolds.

          Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine.

            To date, 5 different human dental stem/progenitor cells have been isolated and characterized: dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from apical papilla (SCAP), and dental follicle progenitor cells (DFPCs). These postnatal populations have mesenchymal-stem-cell-like (MSC) qualities, including the capacity for self-renewal and multilineage differentiation potential. MSCs derived from bone marrow (BMMSCs) are capable of giving rise to various lineages of cells, such as osteogenic, chondrogenic, adipogenic, myogenic, and neurogenic cells. The dental-tissue-derived stem cells are isolated from specialized tissue with potent capacities to differentiate into odontogenic cells. However, they also have the ability to give rise to other cell lineages similar to, but different in potency from, that of BMMSCs. This article will review the isolation and characterization of the properties of different dental MSC-like populations in comparison with those of other MSCs, such as BMMSCs. Important issues in stem cell biology, such as stem cell niche, homing, and immunoregulation, will also be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adult mesenchymal stem cells for tissue engineering versus regenerative medicine.

              Adult mesenchymal stem cells (MSCs) can be isolated from bone marrow or marrow aspirates and because they are culture-dish adherent, they can be expanded in culture while maintaining their multipotency. The MSCs have been used in preclinical models for tissue engineering of bone, cartilage, muscle, marrow stroma, tendon, fat, and other connective tissues. These tissue-engineered materials show considerable promise for use in rebuilding damaged or diseased mesenchymal tissues. Unanticipated is the realization that the MSCs secrete a large spectrum of bioactive molecules. These molecules are immunosuppressive, especially for T-cells and, thus, allogeneic MSCs can be considered for therapeutic use. In this context, the secreted bioactive molecules provide a regenerative microenvironment for a variety of injured adult tissues to limit the area of damage and to mount a self-regulated regenerative response. This regenerative microenvironment is referred to as trophic activity and, therefore, MSCs appear to be valuable mediators for tissue repair and regeneration. The natural titers of MSCs that are drawn to sites of tissue injury can be augmented by allogeneic MSCs delivered via the bloodstream. Indeed, human clinical trials are now under way to use allogeneic MSCs for treatment of myocardial infarcts, graft-versus-host disease, Crohn's Disease, cartilage and meniscus repair, stroke, and spinal cord injury. This review summarizes the biological basis for the in vivo functioning of MSCs through development and aging.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi
                1687-966X
                1687-9678
                2020
                31 January 2020
                : 2020
                : 7593402
                Affiliations
                1Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
                2Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
                3Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
                4Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
                5Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
                Author notes

                Academic Editor: James A. Ankrum

                Author information
                https://orcid.org/0000-0001-8262-5941
                https://orcid.org/0000-0002-6261-3609
                Article
                10.1155/2020/7593402
                7013327
                32089709
                b3007f9f-c0da-4099-8de3-90e15d20d3dc
                Copyright © 2020 Sara El Moshy et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 October 2019
                : 23 December 2019
                : 10 January 2020
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article