Blog
About

3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deciphering the dynamics of Epithelial-Mesenchymal Transition and Cancer Stem Cells in tumor progression

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose of review: The epithelial-Mesenchymal Transition (EMT) and the generation of Cancer Stem Cells (CSC) are two fundamental aspects contributing to tumor growth, acquisition of resistance to therapy, formation of metastases, and tumor relapse. Recent experimental data identifying the circuits regulating EMT and CSCs have driven the development of computational models capturing the dynamics of these circuits and consequently various aspects of tumor progression. Recent findings: We review the contribution made by these models in a) recapitulating experimentally observed behavior, b) making experimentally testable predictions, and c) driving emerging notions in the field, including the emphasis on the aggressive potential of hybrid epithelial/mesenchymal (E/M) phenotype(s). We discuss dynamical and statistical models at intracellular and population level relating to dynamics of EMT and CSCs, and those focusing on interconnections between these two processes. Summary: These models highlight the insights gained via mathematical modeling approaches, and emphasizes that the connections between hybrid E/M phenotype(s) and stemness can be explained by analyzing underlying regulatory circuits. Such experimentally curated models have the potential of serving as platforms for better therapeutic design strategies.

          Related collections

          Most cited references 55

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer metastasis: building a framework.

          Metastasis occurs when genetically unstable cancer cells adapt to a tissue microenvironment that is distant from the primary tumor. This process involves both the selection of traits that are advantageous to cancer cells and the concomitant recruitment of traits in the tumor stroma that accommodate invasion by metastatic cells. Recent conceptual and technological advances promote our understanding of the origins and nature of cancer metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EMT: 2016.

            The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.

              Cell fate during development is defined by transcription factors that act as molecular switches to activate or repress specific gene expression programmes. The POU transcription factor Oct-3/4 (encoded by Pou5f1) is a candidate regulator in pluripotent and germline cells and is essential for the initial formation of a pluripotent founder cell population in the mammalian embryo. Here we use conditional expression and repression in embryonic stem (ES) cells to determine requirements for Oct-3/4 in the maintenance of developmental potency. Although transcriptional determination has usually been considered as a binary on-off control system, we found that the precise level of Oct-3/4 governs three distinct fates of ES cells. A less than twofold increase in expression causes differentiation into primitive endoderm and mesoderm. In contrast, repression of Oct-3/4 induces loss of pluripotency and dedifferentiation to trophectoderm. Thus a critical amount of Oct-3/4 is required to sustain stem-cell self-renewal, and up- or downregulation induce divergent developmental programmes. Our findings establish a role for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and illustrate the sophistication of critical transcriptional regulators and the consequent importance of quantitative analyses.
                Bookmark

                Author and article information

                Journal
                28 August 2018
                1808.09113

                http://creativecommons.org/licenses/by/4.0/

                Custom metadata
                q-bio.MN q-bio.CB

                Cell biology, Molecular biology

                Comments

                Comment on this article