51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-step isolation of extracellular vesicles by size-exclusion chromatography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively.

          Aim

          To develop a single-step protocol to isolate vesicles from human body fluids.

          Methods

          Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction.

          Results

          Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18–20 (32%±2 of total), and protein in fractions 19–21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein.

          Conclusions

          SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Body fluid derived exosomes as a novel template for clinical diagnostics

          Background Exosomes are small membrane vesicles with a size of 40-100 nm that are released by different cell types from a late endosomal cellular compartment. They can be found in various body fluids including plasma, malignant ascites, urine, amniotic fluid and saliva. Exosomes contain proteins, miRNAs and mRNAs (exosome shuttle RNA, esRNA) that could serve as novel platform for diagnosis. Method We isolated exosomes from amniotic fluid, saliva and urine by differential centrifugation on sucrose gradients. Marker proteins were identified by Western blot and FACS analysis after adsorption of exosomes to latex beads. We extracted esRNA from exosomes, carried out RT-PCR, and analyzed amplified products by restriction length polymorphism. Results Exosomes were positive for the marker proteins CD24, CD9, Annexin-1 and Hsp70 and displayed the correct buoyant density and orientation of antigens. In sucrose gradients the exosomal fractions contained esRNA that could be isolated with sufficient quantity for further analysis. EsRNAs were protected in exosomes from enzymatic degradation. Amniotic fluid esRNA served as template for the typing of the CD24 single nucleotide polymorphism (rs52812045). It also allowed sex determination of the fetus based on the detection of the male specific ZFY gene product. Conclusions Our data demonstrate that exosomes from body fluids carry esRNAs which can be analyzed and offers access to the transcriptome of the host organism. The exosomal lipid bilayer protects the genetic information from degradation. As the isolation of exosomes is a minimally invasive procedure, this technique opens new possibilities for diagnostics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microparticle-associated tissue factor activity: a link between cancer and thrombosis?

            Cancer, in particular mucinous adenocarcinoma, is associated with venous thromboembolism (VTE). Tissue factor (TF), initiator of coagulation, plays a central role in the paradigm that clotting and tumor growth form a vicious circle, in which hypercoagulability facilitates the aggressive biology of cancer and vice versa. Expression of TF in tumors is associated with poor differentiation and poor prognosis. We investigated the association between clinically manifest VTE and procoagulant properties of circulating microparticles (MP) isolated from blood of unselected pancreatic and breast adenocarcinoma patients' consecutive subjects, who presented with ultrasound or CT-scan confirmed VTE, and healthy subjects. Patients with disseminated breast and pancreatic cancer had significantly increased levels of MP-associated TF activity compared with healthy controls, subjects with idiopathic acute VTE and non-metastatic cancer patients. Patients with both high MP-associated TF-activity and MP-associated epithelial mucin (MUC1) had a lower survival rate at 3-9 months follow-up than those with low TF-activity and no MUC1 expression: the likelihood of survival was 0.42 (95% CI: 0.19- 0.94) for an individual with these two predictor variables present, after adjustment for other factors (age cohort, type of cancer, VTE) in the Cox proportional hazards model. Our results suggest an important role for MP-associated TF and MUC1 in the pathogenesis of thrombosis in disseminated mucinous adenocarcinoma patients. Future studies should reveal the mechanism underlying the observed associations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosome isolation for proteomic analyses and RNA profiling.

              While the existence of exosomes has been known for over three decades, they have garnered recent interest due to their potential diagnostic and therapeutic relevance. The expression and release of specific tumor-derived proteins into the peripheral circulation has served as the centerpiece of cancer screening and diagnosis. Recently, tissue-associated microRNA (miRNA) has been shown to be characteristic of tumor type and developmental origin, as well as exhibit diagnostic potential. Tumors actively release exosomes, exhibiting proteins and RNAs derived from the originating cell, into the peripheral circulation and other biologic fluids. Recently, we have demonstrated the presence of miRNAs within the RNA fraction of circulating tumor-derived exosomes. Currently, in over 75 investigations compiled in ExoCarta, over 2,300 proteins and 270 miRNAs have been linked with exosomes derived from biologic fluids. Our previous work has indicated that these circulating exosomal proteins and miRNAs can serve as surrogates for the tumor cell-associated counterparts, extending their diagnostic potential to asymptomatic individuals. In this chapter, we compare currently utilized methods for purifying exosomes for postisolation analyses. The exosomes derived from these approaches were assessed for quantity and quality of specific RNA populations and specific marker proteins. These results suggest that, while each method purifies exosomal material, circulating exosomes isolated by ExoQuick precipitation produces exosomal RNA and protein with greater purity and quantity than chromatography, ultracentrifugation, and DynaBeads. While this precipitation approach isolates exosomes in general and does not exhibit specificity for the originating cell, the increased quantity and quality of exosomal proteins and RNA should enhance the sensitivity and accuracy of down-stream analyses, such as qRT-PCR profiling of miRNA and mass spectrometric and electrophoretic analyses of exosomal proteins.
                Bookmark

                Author and article information

                Journal
                J Extracell Vesicles
                J Extracell Vesicles
                JEV
                Journal of Extracellular Vesicles
                Co-Action Publishing
                2001-3078
                08 September 2014
                2014
                : 3
                : 10.3402/jev.v3.23430
                Affiliations
                [1 ]Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
                [2 ]Department of Biomedical Engineering and Physics, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
                Author notes
                [* ]Correspondence to: Anita N. Böing, Department of Clinical Chemistry, Academic Medical Centre, (room B1-238), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands, Email: a.n.boing@ 123456amc.nl

                Responsible Editor: Aled Clayton, Cardiff University, UK.

                Article
                23430
                10.3402/jev.v3.23430
                4159761
                25279113
                b314fcd4-797f-4614-a04f-973ac57f0357
                © 2014 Anita N. Böing et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 November 2013
                : 31 July 2014
                : 05 August 2014
                Categories
                Original Research Article

                extracellular vesicles,isolation,lipoproteins,plasma,protein,size-exclusion chromatography

                Comments

                Comment on this article