2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of radius of anterior lens surface curvature measurements in vivo using the anterior segment optical coherence tomography and Scheimpflug imaging

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To assess the radius of anterior lens surface curvature (RAL) measurements with anterior segment optical coherence tomography (AS-OCT) in comparison with Scheimpflug imaging.

          Methods

          This prospective, cross-sectional study was carried out at Zhongshan Ophthalmic Center, Guangzhou, China. We enrolled 59 eyes, including 30 eyes from 30 cataractous volunteers (59 to 87 years) and 29 eyes from 29 young participants (19 to 49 years). After mydriasis, the RAL was measured automatically by the built-in software in the AS-OCT (CASIA 2). The Scheimpflug images were measured with the build-in caliper tool of the Scheimpflug camera (Pentacam), and RAL were further calculated with the principle of best-fitted circle. Intraobserver and interobserver reproducibility of RAL measurement using Scheimpflug camera were evaluated with limit of agreement (LoA) and intraclass correlation coefficient (ICC). Consistency between RAL measurement of Scheimpflug camera and AS-OCT were assessed with LoA, correlation analysis and linear regression.

          Results

          For all subjects, intraobserver (LoA: −0.25 to 0.23 mm, ICC: 0.996) and interobserver reproducibility (LoA: −0.85 to 0.92 mm, ICC: 0.947) of RAL were good using Scheimpflug imaging. Both AS-OCT and Scheimpflug imaging found that the age-related cataract participants had smaller RAL (P=0.010, P=0.001 respectively). LoA of RAL measurement between AS-OCT and Scheimpflug imaging was −3.83 to −0.79 mm, and the Pearson correlation efficient was 0.909 (P<0.001). The RAL values measured by AS-OCT were significantly greater than that by Scheimpflug camera with a mean difference of 2.31 mm for all participants (P<0.001). The RAL measurement could be converted using the equation: Y CASIA 2 =1.155 × X Pentacam + 1.060.

          Conclusions

          Both Scheimpflug camera system with internal caliper tool and the AS-OCT are fast and non-contact tools that could measure RAL successfully. The two measurement results are highly correlated and interchangeable through linear regression equation.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The physiological optics of the lens.

          The optical properties of the ocular lens are important to overall vision quality. As a transparent biological tissue, the lens contributes to the overall and dynamic focussing power of the eye, and corrects for optical errors introduced by the cornea. The optical properties of the lens change throughout life. Alterations to the refractive properties and transparency of the lens result in presbyopia and cataract, respectively. However, it is not well understood how changes to lens cellular structure and function initiate these changes in refraction and transparency. Here, we attempt to bridge this knowledge gap by reviewing how the optical properties of the lens are first established, and then maintained at the cellular level throughout the lifetime of an individual. Central to this understanding is the fact that the lens has a microcirculation system that generates a flux of ions and water that circulates through the lens. By supporting ionic and metabolic homeostasis in the lens, the system actively maintains lens transparency, and by regulating the steady state water content of the lens, controls the two key parameters, lens geometry and the gradient of refractive index, which determine the refractive properties of the lens. Thus, water transport is emerging as the critical parameter that links the transparency and refractive properties of the lens at the cellular level, and highlights the need to study how age-related changes in water transport result in presbyopia and cataract, the leading causes of refractive error and blindness in the world today.
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Repeatability of automatic measurements by a new anterior segment optical coherence tomographer combined with Placido topography and agreement with 2 Scheimpflug cameras

              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement

              Objective To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. Methods and analysis One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), −1 D, −3 D and −5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. Results The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. Conclusions This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress.

                Author and article information

                Journal
                Ann Transl Med
                Ann Transl Med
                ATM
                Annals of Translational Medicine
                AME Publishing Company
                2305-5839
                2305-5847
                March 2020
                March 2020
                : 8
                : 5
                : 177
                Affiliations
                [1]State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou 510060, China
                Author notes

                Contributions: (I) Conception and design: Z Liu, L Luo; (II) Administrative support: Y Liu; (III) Provision of study materials or patients: X Ruan, W Wang; (IV) Collection and assembly of data: J Liu, Y Meng; (V) Data analysis and interpretation: X Gu, J Fu; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

                [#]

                These authors contributed equally to this work.

                Correspondence to: Lixia Luo, MD, PhD. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. Email: luolixia@ 123456gzzoc.com
                Article
                atm-08-05-177
                10.21037/atm.2020.01.100
                7154444
                32309324
                b328f95b-166a-460b-a18a-157e6acb8e28
                2020 Annals of Translational Medicine. All rights reserved.

                Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

                History
                : 20 October 2019
                : 14 January 2020
                Categories
                Original Article

                crystalline lens,radius of anterior lens surface curvature (ral),scheimpflug camera,anterior segment optical coherence tomography (as-oct)

                Comments

                Comment on this article

                Related Documents Log