16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Depth-Variable Settlement Patterns and Predation Influence on Newly Settled Reef Fishes ( Haemulon spp., Haemulidae)

      research-article
      1 , * , 2 , 1
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During early demersal ontogeny, many marine fishes display complex habitat-use patterns. Grunts of the speciose genus Haemulon are among the most abundant fishes on western North Atlantic coral reefs, with most species settling to shallow habitats (≤12 m). To gain understanding into cross-shelf distributional patterns exhibited by newly settled stages of grunts (<2 cm total length), we examined: 1) depth-specific distributions of congeners at settlement among sites at 8 m, 12 m, and 21 m, and 2) depth-variable predation pressure on newly settled individuals (species pooled). Of the six species identified from collections of newly settled specimens (n = 2125), Haemulon aurolineatum (tomtate), H. flavolineatum (French grunt), and H. striatum (striped grunt) comprised 98% of the total abundance; with the first two species present at all sites. Prevalence of H. aurolineatum and H. flavolineatum decreased substantially from the 8-m site to the two deeper sites. In contrast, H. striatum was absent from the 8-m site and exhibited its highest frequency at the 21-m site. Comparison of newly settled grunt delta density for all species on caged (predator exclusion) and control artificial reefs at the shallowest site (8-m) revealed no difference, while the 12-m and 21-m sites exhibited significantly greater delta densities on the caged treatment. This result, along with significantly higher abundances of co-occurring piscivorous fishes at the deeper sites, indicated lower predation pressure at the 8-m site. This study suggests habitat-use patterns of newly settled stages of some coral reef fishes that undergo ontogenetic shifts are a function of depth-variable predation pressure while, for at least one deeper-water species, proximity to adult habitat appears to be an important factor affecting settlement distribution.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Mangroves enhance the biomass of coral reef fish communities in the Caribbean.

          Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae).

            The high biodiversity of tropical marine hotspots has long intrigued evolutionary biologists and biogeographers. The genus Haemulon (grunts) is one of the most important (numerically, ecologically, and economically) reef fish groups in the New World and an excellent candidate to test hypotheses of speciation and diversity generation in the Greater Caribbean, the richest Atlantic biodiversity hotspot, as well as the eastern Pacific. To elucidate the phylogenetic relationships among the species of Haemulon, we obtained a combined total of 2639 base pairs from two mitochondrial genes (cytochrome b and cytochrome oxidase I), and two nuclear genes (TMO-4C4 and RAG2) from all nominal species. Parsimony, Maximum likelihood, and Bayesian analyses resulted in a well-resolved phylogeny with almost identical topologies. Previous phylogenetic hypotheses based on adult morphology, such as the close relationship among H. aurolineatum, H. boschmae, and H. striatum were not supported, whereas others using developmental characters, such as the relationship between H. plumieri and H. sciurus, were confirmed. Our data also indicate that the populations of the nominal H. steindachneri from the two sides of the Isthmus of Panama are genetically divergent at the species level in each ocean, and that the boga, Inermia vittata (family Inermiidae), belongs in the genus Haemulon. This evidence implies that there are 21 valid species of Haemulon, two more than previously recognized. The Amazon barrier and the Isthmus of Panama seem to have played roles in allopatric speciation of Haemulon. However, the majority of sister species pairs have completely overlapping distributions, indicating that vicariance is not the only process driving speciation in this genus. We conclude that both vicariance between biogeographic provinces, and ecological mechanisms of speciation within provinces contribute to species richness in the genus Haemulon.
              Bookmark

              Author and article information

              Contributors
              Role: Editor
              Journal
              PLoS One
              PLoS ONE
              plos
              plosone
              PLoS ONE
              Public Library of Science (San Francisco, USA )
              1932-6203
              2012
              14 December 2012
              : 7
              : 12
              : e50897
              Affiliations
              [1 ]Oceanographic Center, National Coral Reef Institute, Nova Southeastern University, Dania Beach, Florida, United States of America
              [2 ]Department of Education and Interdisciplinary Studies, Florida Institute of Technology, Melbourne, Florida, United States of America
              National Institute of Water & Atmospheric Research, New Zealand
              Author notes

              Competing Interests: The authors have declared that no competing interests exist.

              Conceived and designed the experiments: LKBJ RES KCL. Performed the experiments: LKBJ RES KCL. Analyzed the data: LKBJ. Contributed reagents/materials/analysis tools: LKBJ RES. Wrote the paper: LKBJ.

              [¤]

              Current address: Microwave Telemetry, Inc., Columbia, Maryland, United States of America

              Article
              PONE-D-12-25973
              10.1371/journal.pone.0050897
              3522718
              23272077
              b339fda0-7a3f-44aa-b473-1b89dd963f44
              Copyright @ 2012

              This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

              History
              : 28 August 2012
              : 26 October 2012
              Page count
              Pages: 11
              Funding
              This manuscript is a result of research partially funded by the National Oceanic and Atmospheric Administration Coastal Ocean Program under an award to Nova Southeastern University for the National Coral Reef Institute (NCRI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.
              Categories
              Research Article
              Biology
              Ecology
              Community Ecology
              Community Assembly
              Community Structure
              Niche Construction
              Species Interactions
              Ecological Environments
              Marine Environments
              Ecosystems
              Artificial Ecosystems
              Marine Ecology
              Coral Reefs
              Coastal Ecology
              Marine Biology
              Coastal Ecology
              Fisheries Science
              Marine Ecology

              Uncategorized
              Uncategorized

              Comments

              Comment on this article