41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Using FlyAtlas to identify better Drosophila melanogaster models of human disease.

          FlyAtlas, a new online resource, provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of coleopteran insect pests through RNA interference.

            Commercial biotechnology solutions for controlling lepidopteran and coleopteran insect pests on crops depend on the expression of Bacillus thuringiensis insecticidal proteins, most of which permeabilize the membranes of gut epithelial cells of susceptible insects. However, insect control strategies involving a different mode of action would be valuable for managing the emergence of insect resistance. Toward this end, we demonstrate that ingestion of double-stranded (ds)RNAs supplied in an artificial diet triggers RNA interference in several coleopteran species, most notably the western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. This may result in larval stunting and mortality. Transgenic corn plants engineered to express WCR dsRNAs show a significant reduction in WCR feeding damage in a growth chamber assay, suggesting that the RNAi pathway can be exploited to control insect pests via in planta expression of a dsRNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol.

              We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA-expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                02 March 2016
                2016
                : 6
                : 22587
                Affiliations
                [1 ]Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California , Davis, CA 95616.
                Author notes
                Article
                srep22587
                10.1038/srep22587
                4773866
                26931800
                b33d5516-667e-49f5-939d-9c172d98e511
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 28 September 2015
                : 17 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article