33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammasome Priming Is Similar for Francisella Species That Differentially Induce Inflammasome Activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammasome activation is a two-step process where step one, priming, prepares the inflammasome for its subsequent activation, by step two. Classically step one can be induced by LPS priming followed by step two, high dose ATP. Furthermore, when IL-18 processing is used as the inflammasome readout, priming occurs before new protein synthesis. In this context, how intracellular pathogens such as Francisella activate the inflammasome is incompletely understood, particularly regarding the relative importance of priming versus activation steps. To better understand these events we compared Francisella strains that differ in virulence and ability to induce inflammasome activation for their relative effects on step one vs. step two. When using the rapid priming model, i.e., 30 min priming by live or heat killed Francisella strains (step 1), followed by ATP (step 2), we found no difference in IL-18 release, p20 caspase-1 release and ASC oligomerization between Francisella strains ( F. novicida, F. holarctica –LVS and F. tularensis Schu S4). This priming is fast, independent of bacteria viability, internalization and phagosome escape, but requires TLR2-mediated ERK phosphorylation. In contrast to their efficient priming capacity, Francisella strains LVS and Schu S4 were impaired in inflammasome triggering compared to F. novicida. Thus, observed differences in inflammasome activation by F. novicida, LVS and Schu S4 depend not on differences in priming but rather on their propensity to trigger the primed inflammasome.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides.

          The Toll-like receptor (TLR)9 is critical for the recognition of immunostimulatory CpG motifs but may cooperate with other TLRs. We analyzed TLR1-10 mRNA expression by using quantitative real-time PCR in highly purified subsets of human PBMC and determined the sensitivity of these subsets to CpG oligodeoxynucleotides (ODN). TLR1 and TLR6 were expressed in all cell types examined. TLR10 was highly expressed in B cells and weakly expressed in plasmacytoid dendritic cells (PDC). High expression of TLR2 was characteristic for monocytes. PDC and B cells expressed marked levels of TLR7 and TLR9 and were directly sensitive to CpG ODN. In CpG ODN-stimulated PDC and B cells, TLR9 expression rapidly decreased, as opposed to TLR7, which was up-regulated in PDC and decreased in B cells. In monocytes, NK cells, and T cells, TLR7 was absent. Despite low expression of TLR9, monocytes, NK cells, and T cells did not respond to CpG ODN in the absence of PDC but were activated in the presence of PDC. In conclusion, our studies provide evidence that PDC and B cells, but not monocytes, NK cells, or T cells, are primary targets of CpG ODN in peripheral blood. The characteristic expression pattern of TLR1-10 in cellular subsets of human PBMC is consistent with the concept that TLR9 is essential in the recognition of CpG ODN in PDC and B cells. In addition, selective regulation of TLR7 expression in PDC and B cells by CpG ODN revealed TLR7 as a candidate TLR potentially involved in modulating the recognition of CpG motifs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome.

            Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1 beta and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-kappaB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-kappaB inhibitors revealed that the synthetic I kappaB kinase-beta inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-kappaB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations.

              Francisella tularensis has been recognized as a human pathogen for almost 100 years and is the etiological agent of the zoonotic disease tularemia. Soon after its discovery, it became recognized as an important pathogen in several parts of the world, for example, in the United States and Soviet Union. The number of tularemia cases in the two countries peaked in the 1940s and has thereafter steadily declined. Despite this decline, there was still much interest in the pathogen in the 1950s and 1960s since it is highly infectious and transmissible by aerosol, rendering it a potent biothreat agent. In fact, it was one of the agents that was given the highest priority in the offensive programs of the United States and Soviet Union. After termination of the offensive programs in the 1960s, the interest in F. tularensis diminished significantly and little research was carried out for several decades. Outbreaks of tularemia during the last decade in Europe, for example, in Kosovo, Spain, and Scandinavia, led to a renewed public interest in the disease. This, together with a massive increase in the research funding, in particular in the United States since 2001, has resulted in a significant increase in the number of active Francisella researchers. This article summarizes, predominantly with a historical perspective, the epidemiology and clinical manifestations of tularemia and the physiology of F. tularensis.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 May 2015
                2015
                : 10
                : 5
                : e0127278
                Affiliations
                [1 ]Davis Heart & Lung Research Institute and Pulmonary Allergy Critical Care and Sleep Medicine Division, The Ohio State University, Columbus, OH, 43210, United States of America
                [2 ]Microbiology and Immunology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
                University of California Merced, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MG MDW MAG. Performed the experiments: MG SM MAG. Analyzed the data: MG MDW MAG. Contributed reagents/materials/analysis tools: MG SM RAE MDW MAG. Wrote the paper: MG MDW MAG. Co-supervised Mohammed G. Ghonime from the Egyptian side: RAE.

                Article
                PONE-D-14-51942
                10.1371/journal.pone.0127278
                4436270
                25993107
                b340a586-2d58-43a4-83e8-79533073eca1
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 18 November 2014
                : 13 April 2015
                Page count
                Figures: 5, Tables: 0, Pages: 15
                Funding
                This work was supported by NIH grant HL089440 and Public Health Preparedness for Infectious Diseases (PHPID) grant from OSU.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article