114
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin Alleviates Neuropathic Pain by Inhibiting p300/CBP Histone Acetyltransferase Activity-Regulated Expression of BDNF and Cox-2 in a Rat Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The management of neuropathic pain is still a major challenge because of its unresponsiveness to most common treatments. Curcumin has been reported to play an active role in the treatment of various neurological disorders, such as neuropathic pain. Curcumin has long been recognized as a p300/CREB-binding protein (CBP) inhibitor of histone acetyltransferase (HAT) activity. However, this mechanism has never been investigated for the treatment of neuropathic pain with curcumin. The aim of the present study was to investigate the anti-nociceptive role of curcumin in the chronic constriction injury (CCI) rat model of neuropathic pain. Furthermore, with this model we investigated the effect of curcumin on P300/CBP HAT activity-regulated release of the pro-nociceptive molecules, brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (Cox-2). Treatment with 40 and 60 mg/kg body weight curcumin for 7 consecutive days significantly attenuated CCI-induced thermal hyperalgesia and mechanical allodynia, whereas 20 mg/kg curcumin showed no significant analgesic effect. Chromatin immunoprecipitation analysis revealed that curcumin dose-dependently reduced the recruitment of p300/CBP and acetyl-Histone H3/acetyl-Histone H4 to the promoter of BDNF and Cox-2 genes. A similar dose-dependent decrease of BDNF and Cox-2 in the spinal cord was also observed after curcumin treatment. These results indicated that curcumin exerted a therapeutic role in neuropathic pain by down-regulating p300/CBP HAT activity-mediated gene expression of BDNF and Cox-2.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia.

          A method to measure cutaneous hyperalgesia to thermal stimulation in unrestrained animals is described. The testing paradigm uses an automated detection of the behavioral end-point; repeated testing does not contribute to the development of the observed hyperalgesia. Carrageenan-induced inflammation resulted in significantly shorter paw withdrawal latencies as compared to saline-treated paws and these latency changes corresponded to a decreased thermal nociceptive threshold. Both the thermal method and the Randall-Selitto mechanical method detected dose-related hyperalgesia and its blockade by either morphine or indomethacin. However, the thermal method showed greater bioassay sensitivity and allowed for the measurement of other behavioral parameters in addition to the nociceptive threshold.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man.

            A peripheral mononeuropathy was produced in adult rats by placing loosely constrictive ligatures around the common sciatic nerve. The postoperative behavior of these rats indicated that hyperalgesia, allodynia and, possibly, spontaneous pain (or dysesthesia) were produced. Hyperalgesic responses to noxious radiant heat were evident on the second postoperative day and lasted for over 2 months. Hyperalgesic responses to chemogenic pain were also present. The presence of allodynia was inferred from the nocifensive responses evoked by standing on an innocuous, chilled metal floor or by innocuous mechanical stimulation, and by the rats' persistence in holding the hind paw in a guarded position. The presence of spontaneous pain was suggested by a suppression of appetite and by the frequent occurrence of apparently spontaneous nocifensive responses. The affected hind paw was abnormally warm or cool in about one-third of the rats. About one-half of the rats developed grossly overgrown claws on the affected side. Experiments with this animal model may advance our understanding of the neural mechanisms of neuropathic pain disorders in humans.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              CBP/p300 in cell growth, transformation, and development.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                6 March 2014
                : 9
                : 3
                : e91303
                Affiliations
                [1 ]Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
                [2 ]Liver Cancer Laboratory, Xiangya Hospital of Central South University, Changsha, China
                [3 ]Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                Imperial College London, Chelsea & Westminster Hospital, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CH QG. Performed the experiments: XZ QL RC DY ZS. Analyzed the data: XZ QL ZS. Contributed reagents/materials/analysis tools: QL RC. Wrote the paper: CH QG.

                Article
                PONE-D-13-47409
                10.1371/journal.pone.0091303
                3946321
                24603592
                b343b0b7-d4b6-47b9-8f44-9e73d76c960b
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 November 2013
                : 10 February 2014
                Page count
                Pages: 9
                Funding
                This project was supported by National Natural Science Foundation of China (81000478, 81171053) and Science and Technology Planning Project of Hunan Province, China (2012WK3019). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Model Organisms
                Animal Models
                Rat
                Molecular Cell Biology
                Signal Transduction
                Signaling in Cellular Processes
                Creb Signaling
                Neuroscience
                Cognitive Neuroscience
                Pain
                Molecular Neuroscience
                Medicine
                Anesthesiology
                Pain Management
                Neurology
                Pain Management

                Uncategorized
                Uncategorized

                Comments

                Comment on this article